
j

i

j

i

j

i

j

i

j

i i (f)

j
(a) (b) (c)

(d) (e)

 8

2O

22

24

26

28

3O

32

34

36

Ti
m

e
(s

)
Ti

m
e

(s
)

More kernels

acc_shutdown()
(cleanup the context)

No

Ti
m

e
(s

)

Ti
m

e
(s

)
Ti

m
e

(s
)

Ti
m

e
(s

)

Total Time Kernel Time Total Time
DGEMM Laplacian

Fig. 7: Performance Comparison between PGI and OpenUH

PGI-OO
PGI-O3

OpenUH

PGI-OO
PGI-O3

OpenUH

12

14

16

20

18

22

24

26

28

32

30

Jacobi DGEMM Gaussblur

Benchmark

Map-g-v
Map-gv-v
Map-g-gv

Map-gv-gv

acc_init()
(setup the context)

remaining data
in data clause

Yes

Is data in
the map

Allocate device
memory for this data,
and put it in the map

Copy this data from
host to device

Move to the next
data clause

Setup threads topology

Push kernel arguments

Load and launch kernel

Has reduction

Launch reduction
algorithm kernel

Copy result data from
device to host

Yes

No

Yes

No

Yes

No

OpenUH Compiler Infrastructure

FRONTENDS
(C/C++,F90,OpenMP,OpenACC)

IPA
(Inter Procedural Analyzer)

PRELOWER
(Preprocess OpenACC)

LNO
(Loop Nest Optimizer)

LOWER
(Transformation of OpenACC)

WOPT
(Global Scalar Optimizer)

WHIRL2C & WHIRL2CUDA
(IR-to-source for other targets)

CG
(Code for IA-32,IA-64,X86_64)

Source with
OpenACC
Directives

CPU Code

General CPU
Compiler

GPU Code

NVCC
Compiler

PTX
Assembler

Loaded
Dynamically

CPU Binary

Runtime
Library Linker

Executable

13.4

13.3

13.2

13.1

13

12.9

12.8

12.7

12.6

13.5

13.6

Jacobi

PGI-OO
PGI-O3

OpenUH

PGI-OO
PGI-O3

OpenUH

Kernel Time Total Time

1

10

100
PGI-O0
PGI-O3

OpenUH

PGI-O0
PGI-O3

OpenUH

Kernel Time

O

1

2

3

4

5

Stencil

PGI-OO
PGI-O3

Open

PGI-OO
PGI-O3

Open

Kernel Time Total Time

0.1

1

10

100

1000

Stencil Laplacian Wave13pt

Benchmark

Map-g-gv-v
Map-v-gv-gv
Map-v-gv-g

OpenUH – An Open Source OpenACC Compiler

Xiaonan Tian, Rengan Xu, Yonghong Yan, Zhifeng Yun, Sunita Chandrasekaran, Barbara Chapman
Department of Computer Science, University of Houston

Email: {xtian2, rxu6, yyan3, zyun, schandrasekaran, bchapman}@uh.edu , http://web.cs.uh.edu/~openuh

Introduction

Loops Transformation

● OpenACC is an emerging directive-based programming
model for programming accelerators that typically enable
non-expert programmers to achieve portable and
productive performance of their applications.

● We constructed a prototype open-source OpenACC
compiler OpenUH which is based on a branch of main
stream Open64 compiler. The experiences could be
applicable to other compiler implementation efforts.

● We provide multiple loop mapping strategies in the
compiler on how to efficiently distribute parallel loops
to the GPGPU accelerators. Our findings provide
guidance for users to adopt suitable loop mappings
depending on their application characteristics.

● OpenUH compiler adopts a source-to-source approach
and generates readable CUDA source code for GPGPUs.
This gives users opportunities to understand how the loop
mapping mechanism are applied and to further optimize
the code manually. It also allows us to leverage the
advanced optimization features in the backend
compilation step by the CUDA compiler.

Results

References

Rengan Xu, Xiaonan Tian, Yonghong Yan, Sunita Chandrasekaran, and
Barbara Chapman. Reduction Operations in Parallel Loops for GPGPUs, in
PMAM 2014, Feb., 2014, Orlando, Florida, USA

Xiaonan Tian, Rengan Xu, Yonghong Yan, Zhifeng Yun, Sunita
Chandrasekaran, Barbara Chapman. Compiling a High-Level Directive-Based
Programming Model for GPGPUs , In LCPC2013, Sep. 2013, San Jose, CA,
USA

Acknowledgment

This research was supported by NVIDIA and Department of Energy under
Award Agreement No. DE-FC02-12ER26099. We also thank PGI for providing
the compiler and support for the evaluation

OpenACC Implementation in OpenUH

● An open-source OpenACC compiler is created using OpenUH
compiler framework

● Loop mapping mechanisms are designed to translate single loop,
double loop and triple nested loop

● Competitive performance compared to a commercial OpenACC
compiler

● Explore advanced compiler analysis and transformation techniques
to further improve the performance in the future

Conclusion

Fig. 5: Performance of Double
Nested Loop Mapping

Fig. 6: Performance of Triple
Nested Loop Mapping

Fig 1: Triple Nested Loop Iteration Distribution

Fig 2: Double Nested Loop Iteration Distribution

Fig 3: OpenUH Framework for OpenACC

Fig. 4: Execution Flow with OpenACC Runtime Library

http://web.cs.uh.edu/~openuh
http://web.cs.uh.edu/~openuh
http://web.cs.uh.edu/~openuh
http://web.cs.uh.edu/~openuh
http://web.cs.uh.edu/~openuh
http://web.cs.uh.edu/~openuh
http://web.cs.uh.edu/~openuh

	Slide Number 1

