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Fig. 7: Performance Comparison between PGI  and OpenUH 
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Introduction 

Loops Transformation 

● OpenACC is an emerging directive-based programming 
model for programming accelerators that typically enable 
non-expert programmers to achieve portable and 
productive performance of their applications. 

● We constructed a prototype open-source OpenACC 
compiler OpenUH which is based on a branch of main 
stream Open64 compiler. The experiences could be 
applicable to other compiler implementation efforts. 

● We provide multiple loop mapping strategies in the 
compiler on how to efficiently distribute parallel loops 
to the GPGPU accelerators. Our findings provide 
guidance for users to adopt suitable loop mappings 
depending on their application characteristics. 

● OpenUH compiler adopts a source-to-source approach 
and generates readable CUDA source code for GPGPUs. 
This gives users opportunities to understand  how the loop 
mapping mechanism are applied and to further optimize 
the code manually. It also allows us to leverage the 
advanced optimization features in the backend 
compilation step by the CUDA compiler. 

Results 
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OpenACC Implementation in OpenUH 

● An open-source OpenACC compiler is created using OpenUH 
compiler framework 

● Loop mapping mechanisms are designed to translate single loop, 
double loop and triple nested loop 

● Competitive performance compared to a commercial OpenACC 
compiler 

● Explore advanced compiler analysis and transformation techniques 
to further improve the performance in the future 

Conclusion 

Fig. 5: Performance of Double 
Nested Loop Mapping 

Fig. 6: Performance of Triple 
Nested Loop Mapping 

Fig 1: Triple Nested Loop Iteration Distribution 

Fig 2: Double Nested Loop Iteration Distribution 

Fig 3: OpenUH Framework for OpenACC 

Fig. 4: Execution Flow with OpenACC Runtime Library 
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