
Containerizing Deep Learning
Frameworks with Singularity
Rengan Xu, Frank Han, Nishanth Dandapanthula

HPC & AI Solutions Engineering, Dell EMC

2 of 20

Agenda
• Dell EMC HPC & AI Solutions Engineering

• Why use containers?

• Singularity Containers

 Singularity vs Docker

 Interpretability between Singularity vs Docker

 Singularity workflow

• Containerizing DL frameworks

 Issues and workarounds

 eg. Caffe2

• Performance Results
 Horovod + TensorFlow

 MXNet

 Caffe2

3 of 20

Dell EMC HPC & AI Solutions Engineering

Heading
Lorem ipsum
dolor sit amet,
consectetur
adipiscing elit.

Heading
Lorem ipsum

dolor sit amet,
consectetur

adipiscing elit.

Design, develop and integrate
HPC systems

Act as the focal point for joint
R&D activities

HPC & AI
Innovation

Lab

Prototype and evaluate
advanced technologies

Conduct application
performance studies and
develop best practices

4 of 20

Containers and Virtualization Machine: A Recap

source: https://www.docker.com/what-container

• Container has no hypervisor
• Container has no guest OS

5 of 20

Need for Containerization

• Why do we need containers?
– Simplify application building
– Application isolation
– Faster application deployment
– Validate and reproduce results
– Server consolidation/Server efficiency
– Can be deployed on bare metal or on virtual machines

• Benefits of Containers
– Lightweight
– Low overhead
– Easier application sharing among users
– Reproducibility

• Example containers
– LXC
– Docker
– Singularity

6 of 20

Singularity Vs Docker

Feature Singularity Docker
Multiple containers can be run on same hardware  

Can be created and destroyed more quickly  

Do not need entire OS, only a core run time  

Transferable to other machines easily  

Image format Single file Layered Image

Use with HPC schedulers  X

Native Support for MPI  X

Support for GPUs  X

root owned Daemon process X 

7 of 20

Singularity: Workflow Summary

source: http://singularity.lbl.gov/docs-flow

8 of 20

Interpretability between Singularity vs Docker

• Create Singularity image from Docker Hub
• $ singularity pull docker://tensorflow/tensorflow

• Create Singularity image from Nvidia GPU Cloud Docker Registry
• $ export SREGISTRY_NVIDIA_BASE="ngcr.io“
• $ export SREGISTRY_CLIENT=nvidia
• $ export SREGISTRY_NVIDIA_USERNAME='$oauthtoken‘
• $ export SREGISTRY_NVIDIA_TOKEN='[NGC_API_KEY]‘
• $ sregistry pull nvidia://tensorflow:17.11

9 of 20

Singularity MPI

• Has built-in support for all MPI implementations
(OpenMPI, MPICH, Intel MPI, etc.)

• Host MPI version must be newer or equal to the
version inside the container

• Example:
– mpirun –np 4 singularity exec centos_ompi.img

/usr/bin/mpi_ring

9

source: https://wikihub.berkeley.edu/download/attachments/129695919/Containers_in_HPC_summary_Singularity.pdf

run on the host run in the container

10 of 20

Challenges and Workarounds

• Why containerize DL Frameworks
– Every DL framework has too many dependences
– Each dependent library has special version requirement
– All DL frameworks are changing frequently
– The friendly supported OS for most DL frameworks is Ubuntu, where as datacenter deployments are

RHEL/Centos

• Why we moved to singularity
– Scaling containerized deep learning frameworks past a single node

• Issues faced with Singularity
– PCIe device driver mismatch

• Workarounds
– GPUs

› The container should always use the host GPU driver
› Create a symbolic links for all GPU driver related files and then bind it to container
› Update to latest drivers since they are backward compatible

– InfiniBand
› The InfiniBand driver is kernel dependent, and the solution is to make the container OS and host OS compatible

and the container reuses the InfiniBand driver and libraries on the host

11 of 20

Singularity recipe for Caffe2

12 of 20

Building the container

13 of 20

Build Caffe2 inside the container

14 of 20

Run the container

• ${mpirun_options} ${profile_options} \

singularity exec -s /bin/bash \

-B $host_paths -B $PWD:/mnt \

-B /usr/lib64:/ibverb_libs -B /etc/libibverbs.d -B /sys/class/infiniband_verbs \

centos7_caffe2_dev_sandbox /mnt/caffe2_singularity_cmd.sh \

${WORK_DIR} ${gpu_arch} ${gpus_per_node} $network ${run_id} ${num_nodes} $epochs
$profile $debug $mpi) >& $train_log

15 of 20

Testbed

• 8 Dell EMC PowerEdge C4140
nodes.

– In process of updating to 32 nodes
with NVLINK

• Nvidia V100-PCIe GPUs

• Intel Xeon Skylake CPU

• Mellanox 100Gbps EDR Infiniband

• CUDA 9.0, CUDNN 7.0, NCCL 2.0

• Dataset: ILSVRC 2012

16 of 20

Performance Results – MXNet

• In FP32 mode, batch size: 64 per GPU
• In FP16 mode, batch size: 128 per GPU
• IPoIB, rsync are used for nodes

communication
• Speedup of 32 V100 is 29.4x in FP32 and

25.8x in FP16

Performance difference between Singularity vs bare-metal

-0.8% 0.4% -1.9%
-1.1%

-0.7%

-0.7%

-1.1% -1.1%
0.3%

0.5%

-0.3%

0.2%

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 V100 2 V100 4 V100 8 V100 16 V100 32 V100
Im

ae
gs

/s
ec

MXNet Resnet50

FP32 Singularity FP32 bare-metal FP16 Singularity FP16 bare-metal

17 of 20

Performance Results – Horovod + TensorFlow

• In FP32 mode, batch size: 128 per GPU
• In FP16 mode, batch size: 256 per GPU
• MPI used for multi-node communication
• Speedup of 32 V100 is 22.4x in FP32 and

23.7x in FP16

Performance difference between Singularity vs bare-metal

-1.6% 0.3% 0.6%
0.0%

0.4%

1.2%

-1.6% 0.1%
0.2%

0.2%

-0.3%

0.3%

0

2000

4000

6000

8000

10000

12000

14000

16000

1 V100 2 V100 4 V100 8 V100 16 V100 32 V100
Im

ag
es

/s
ec

Horovod+TensorFlow Resnet50

FP32 Singularity FP32 bare-metal FP16 Singularity FP16 bare-metal

18 of 20

Performance Results – Caffe2

• In FP32 mode, batch size: 64 per GPU
• In FP16 mode, batch size: 128 per GPU
• Redis and IPoIB are used for nodes

communication
• Caffe2 performance unstable on multiple

nodes

Performance difference between Singularity vs bare-metal

0.0%
-0.5%

-0.3%

4.0%
2.4%

-0.4%

0.2%

-0.2%

-0.1% -1.9%

-0.1%

-5.1%

0

500

1000

1500

2000

2500

3000

3500

4000

1 V100 2 V100 4 V100 8 V100 16 V100 32 V100
Im

ag
es

/s
ec

Caffe2 Resnet50

FP32 Singularity FP32 bare-metal FP16 Singularity FP16 bare-metal

19 of 20

Conclusions and Future Work

• Conclusions
– Singularity simplifies the building and deployment of DL in both single-node and multi-node

– Easy to use Singularity on GPU server

– Straightforward to run MPI on InfiniBand interconnect

– No performance loss compared to bare-metal

• Future Work
– File system impact for DL models

– Scale impact for DL model accuracy

– Research on neural networks with model parallelism

– Case studies with appropriate DL models

• Build Optimal Solutions targeted to DL vertical.

www.hpcatdell.com

{Rengan.Xu,Frank.Han1,Nishanth.Dandapanthu}@Dell.com

