
Dell EMC HPC & AI Innovation Lab

S21501 Tuning GPU Server for
Deep Learning Performance

Frank Han : frank.han@dell.com

Rengan Xu : rengan.xu@dell.com

2

Agenda

• The goal of this session

• About us/HPC innovation lab

• MLPerf

• Our testing bed

• Single nodes training finding

• Multiple nodes training

• Inference

3

Goal of this session

• Show some possible tuning knobs

• Share results from our tuning

• More RFPs are using MLPerf

• Next version submission

4

HPC and DL Engineering - what we do

• Design and build systems for HPC and

Deep Learning workloads.

• Systems include compute, storage,

network, software, services, support.

• Integration with factory, software, services.

• Power and performance analysis, tuning,

best practices, trade-offs.

• Focus on application performance.

• Vertical solutions.

• Research and proof of concept studies.

• Publish white papers, blogs, conference

papers (www.hpcatdell.com)

• Access to the systems in the lab

http://www.hpcatdell.com/

5

World-class infrastructure in the Innovation Lab

Zenith
• TOP500-class system based on Intel Scalable

Systems Framework (OPA, KNL, Xeon, OpenHPC)

• 424 nodes dual Intel Xeon Gold processors, Omni-

Path fabric.

• +160 Intel Xeon Phi (KNL) servers.

• Over 1 PF combined performance!

• #265 on Top500 June 2018, 1.86 PF theoretical peak

• Lustre, Isilon H600, Isilon F800 and NSS storage

• Liquid cooled and air cooled

Rattler
• Research/development system with Mellanox, NVIDIA

and Bright Computing

• 88 nodes with EDR InfiniBand and Intel Xeon Gold

processors

• 32x PowerEdge C4140 nodes with 4x NVIDIA GPUs

Other systems

• 32 node AMD cluster, storage solutions, etc.

13K ft.2 lab, 1,300+ servers, ~10PB storage dedicated to HPC in collaboration with the community

6

MLPerf

7

MLPerf training Introduction

Benchmark Dataset Quality Target
Reference

Implementation Model

Image classification ImageNet (224x224) 75.9% Top-1 Accuracy Resnet-50 v1.5

Object detection (light

weight)
COCO 2017 23% mAP SSD-ResNet34

Object detection (heavy

weight)
COCO 2017

0.377 Box min AP, 0.339

Mask min AP
Mask R-CNN

Translation (recurrent) WMT English-German 24.0 BLEU GNMT

Translation (non-recurrent) WMT English-German 25.0 BLEU Transformer

Recommendation Undergoing modification

Reinforcement learning N/A Pre-trained checkpoint Mini Go

• A broad ML benchmark suite for measuring performance of ML frameworks, ML hardware accelerators, and ML cloud

platforms.

• Cover different DL domains

• Proper metrics (training time, accuracy)

• Real datasets

8

Who did what in MLPerf training v0.6

MLPerf
Community

NVIDIA/Others

DELL

• Dell server optimization

• CPU binding

• BIOS HT

• Batch Size/Learning rate/Warm-up steps/etc.

• NCCL P2P & Tree/Ring vs DGX-1 optimized

• Select framework

• Code optimization by each team
• NCCL 2.3 -> 2.4.7

• DALI

• Active function

• Multiple GPU(Horovod)

• DGX optimization
• Batch Size

• etc.

• Define the Sub-benchmarks

• Accuracy

• Models

• Datasets

• Github sample codes 1xP100

9

MLPerf v0.5 and v0.6 difference – MLPerf
community
• Raises quality targets:

• Image classification (ResNet) to 75.9% (v0.5 was 74.9%)

• light-weight object detection (SSD) to 23% mAP (v0.5 was 21.2%)

• recurrent translation (GNMT) to 24 Sacre BLEU (v0.5 was 21.8)

• Allows use of the LARS optimizer for ResNet, enabling additional scaling

• Experimentally allows a slightly larger set of hyperparameters to be tuned
• Enabling faster performance and some additional scaling

• Changes timing to start the first time the application accesses the training dataset, thereby excluding startup
overhead

• This change was made because the large scale systems measured are typically used with much larger datasets than those in
MLPerf, and hence normally amortize the startup overhead over much greater training time

• Improves the MiniGo benchmark in two ways
• First, it now uses a standard C++ engine for the non-ML compute, which is substantially faster than the prior Python engine.

• Second, it now assesses quality by comparing to a known-good checkpoint, which is more reliable than the previous very small
set of game data

• Suspends the Recommendation benchmark while a larger dataset and model are being created

10

Resnet-50 v0.6 improvement - NVIDIA

• Image Classification / ResNet-50 (1.24x

improvement). Implemented new fused

convolution + batchnorm kernels through cuDNN

7.6.
• This optimization drastically reduces the cost of batch

normalization (a bandwidth-limited operation and does not

benefit from Tensor Cores) by performing the normalization in

adjacent convolution layers, as outlined in figure 1.

• A variety of DALI-related improvements

accelerated the data input pipeline, enabling it to

keep up with high-speed neural network

processing.
• These include using NVJPEG and ROI JPEG decode to limit the

JPEG decode work to the region of the raw image actually used.

We also used Horovod for data parallel execution, allowing us to

hide the exchange of gradients between GPUs behind other

back-propagation work happening on the GPU.

Figure 1. New fused convolution + batchnorm

kernels make better use of Tensor Cores and halve

the number of discrete kernels that need to run

11

Testbed

12

Dell EMC DSS8440

13

C4140M – NVLINK System

• All accelerators are put at the front

• The Only Dell system has NVLINK

• Smaller failure zone

• Dual redundant PSU

GPU0

GPU1

GPU3

GPU2

CPU0 CPU1
UPI

NVLink
PCIe x16 Gen 3

IB slot

14

Our cluster

Head Node

FDR – 40GigE Gateway

 ...

 ...

Isilon

Compute Node 0 Compute Node 1 Compute Node n-2 Compute Node n-1

Local Disk

IB EDR Switch1GigE Management switch

Ethernet connection

InfiniBand connection

15

Single nodes

16

MLPerf results – Original NVIDIA docker
run on DSS8440

Network
Server - DSS8440

MLPerf v0.5 MLPerf v0.6

ResNet50-v1.5 159.6 139.0

Mask R-CNN 304.0 232.6

SSD 33.2 25.7

NMT 45.3 78.0

Transformer 51.0 26.7

NCF 1.0 N/A

MiniGo N/A 34.0

• Time taken to converge GNMT from v0.5 to

v0.6 is significantly high.

• Analysis in the next slides

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

M
in

u
te

s
(

Lo
w

e
r

is
 b

e
tt

e
r)

MLPerf v0.5 vs v0.6

MLPerf v0.5 MLPerf v0.6

17

GNMT Profiling results

• Analysis using “nvprof” profiling tool show most of the time (524.42s) is spent on

ncclAllReduceRing communication

18
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/env.html

https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/

https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/env.html
https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/

19

GNMT on DSS8440

• NVIDIA docker is

optimal based on

DGX-1

• PCIe system need

fine tune to make

sure software

matches with

hardware topology

• We are able to

reduce the training

time from 77 min to

33 min on

DSS8440

• Reduces overall

time to 70%

78

55 55 55 55

33

0

10

20

30

40

50

60

70

80

90

Out of box Optimial NCCL
parameters

Newer Docker Hyperparameters Hyperthreading/Bind OS/Driver/BIOS
update

M
in

u
te

s
 (

lo
w

e
r

is
 b

e
tt
e
r)

GNMT v0.6

20

Tuning Knobs - HW
• CPU cores frequency

• 6230 2.1 GHz/20cores

• 6248 2.5 GHz/20cores

• 6252 2.1 GHz/24cores

• Memory 2666 vs 2933

• PCIe vs NVLink

• Except GNMT and Transformer ~30%

• ~10% both single and multiple nodes

• TDP 250 vs 300 W & Higher frequency

• Storage

• Local SSD

• U.2 NVMe

• Isilon

• Lustre

• BIOS
• Custom profile based on HPC

workload profile

• HyperThreading

• SubNumaCluster

• ADDDC

• GPUs
• V100-PCIe/SXM2

• V100S

• RTX 6000/8000

• Server
• C4140

• DSS8440

• R740

21

Tuning Knobs - SW

• Docker version

• Binding with CPU cores

• OS
• Spectre/Meltdown patches

• Dist/Release/Kernel

• GPU Driver

• CUDA toolkit version

• NCCL
• Tree vs Ring

• P2P

• CuDNN

• DALI

• Hyperparameters
• Batch size

• Learning rate

• Etc.

• Frameworks
• Tensorflow

• Pytorch

• MXNet

• Horovod

22

MLPerf training v6.0 tuning result

• Haven’t try everything on every

subtests, some of them applied,

and it is good enough for showing

the difference before and after

tuning

12.6%

6.8%

1.6%
130.1%

10.8%
6.1%

0.0

50.0

100.0

150.0

200.0

250.0

ResNet50 Mask R-CNN SSD NMT Transformer MiniGo

M
in

u
te

s
(l

o
w

e
r

is
 b

e
tt

e
r)

MLPerf v0.6 Converged time on DSS8440

v0.6 Out-of-box v0.6 Tuned

23

Know when to stop

• Tuning is time consuming

• Set expectation

• Compare with known results from MLPerf website
– Hyperparameters

– Converged with less or equal epoch_num

– Average results

– Refer to tokens/s, images/s

• Watch GPU utilization >90 TDP > 200/250 W

• Profiling

• Run with multiple systems will help to speed up

24

Suggestions for single node tuning

• Run on latest OS or newer kernel

• Use NCCL matching your hardware layout

• Use new CUDA libraries

• Improved performance

• Additional parameters

• Explorer settings in Dockerfile, run.sub, run_and_time,

config_DGX1.sh, compare with DGX2’s

• Use submitted results files as reference

25

Build docker with latest libraries
• [root@node009 gnmt]# cat Dockerfile

• ARG FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:19.05-py3

• FROM ${FROM_IMAGE_NAME}

• # Install dependencies for system configuration logger

• RUN wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb && dpkg -i nvidia-machine-learning-repo-

ubuntu1604_1.0.0-1_amd64.deb

• RUN apt-get update && apt-get install -y --no-install-recommends \

• infiniband-diags \

• pciutils \

• libnccl2 libnccl-dev libcudnn7 libcudnn7-dev && \

• rm -rf /var/lib/apt/lists/* #&& rm nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb

• # Rebuild PyTorch

• WORKDIR /opt/pytorch

• RUN cd pytorch && \

• TORCH_CUDA_ARCH_LIST="5.2 6.0 6.1 7.0 7.5+PTX" \

• CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" \

• NCCL_INCLUDE_DIR="/usr/include/" \

• NCCL_LIB_DIR="/usr/lib/" \

• python setup.py install && python setup.py clean

• # Install Python dependencies

• WORKDIR /workspace/rnn_translator

• COPY requirements.txt .

• RUN pip install --no-cache-dir https://github.com/mlperf/training/archive/6289993e1e9f0f5c4534336df83ff199bd0cdb75.zip#subdirectory=compliance \

• && pip install --no-cache-dir -r requirements.txt

• # Copy & build extensions

• COPY seq2seq/csrc seq2seq/csrc

• COPY setup.py .

• RUN pip install .

• # Copy GNMT code

• COPY . .

• # Configure environment variables

• ENV LANG C.UTF-8

• ENV LC_ALL C.UTF-8

26

Multiple nodes

27

MLPerf multiple nodes training

• Not easy to use Docker on multi-node with InfiniBand
– The InfiniBand driver version within Docker container may not match the version on the host

– The docker container may not update the IB driver automatically

• Solution:
– convert the base Docker container into Singularity container

– build MLPerf benchmarks within Singularity container

– run Singularity container with Slurm

28

MLPerf Training on C4140

• Model parallelism requires higher

bandwidth than data parallelism

• 2 IB adapters doesn’t help a lot for

performance improvement

29

Storage Profiling

30

Network Profiling

31

Storage and Network Profiling

ResNet-50 SSD Mask-R-CNN GNMT Transformer

Storage

(Gb/s)

2 nodes 7.4 3.9 0.2 0.19 0.26

4 nodes 16 3.1 0.42 0.28 0.34

8 nodes 18 4.8 1.2 0.3 0.26

Network

(Gb/s)

2 nodes 3.8 1.4 4.4 12 11.6

4 nodes 4 4.8 7.6 36 24.8

8 nodes 4.2 7.6 7.2 48 24.8

32

Inference v0.5

33

MLPerf Inference v0.5 Benchmark

Source: https://arxiv.org/pdf/1911.02549.pdf

34

MLPerf Inference v0.5

Source: https://arxiv.org/pdf/1911.02549.pdf

35

Single stream

e.g. cell phone

augmented vision

Multiple stream

e.g. multiple camera

driving assistance

Server

e.g. translation site

Offline

e.g. photo sorting

Latency

Number streams

subject to latency

bound

QPS

subject to latency

bound

Throughput

MLPerf Inference v0.5

Source: https://arxiv.org/pdf/1911.02549.pdf

36

MLPerf Inference v0.5

• Test Server: R740/C4140

• GPUs: 4x T4/ 3x RTX6000 /4x V100-SXM2 16GB

• Inference Backend: TensorRT 6.0

• Benchmarks:
– ResNet50-v1.5

– MobileNet

– SSD-MobileNets-v1

– SSD-ResNet34

– GNMT

• Inference Scenarios: Server, Offline

37

MLPerf Inference v0.5

43400.8

136956

56396.7

43415.1

136947

56393.8
46218.6

154331

62444.5

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

resnet mobilenet ssd-small

S
a
m

p
le

s
 p

e
r

s
e
c
o
n
d

Offline

baseline boost clock boost clock + ecc off

1077.07

2549.72

1076.42

2549.44

1113.1

2913.67

0

500

1000

1500

2000

2500

3000

3500

ssd-large gnmt

S
a
m

p
le

s
 p

e
r

s
e
c
o
n
d

Offline

baseline boost clock boost clock + ecc off

• Tested with 3x RTX 6000
• Boost clock does not improve the performance

• ECC off can improve the performance by 3.41% to 14.29%

38

MLPerf Inference v0.5

22438

71214.5

30407.9

46438

155750

63005.7

126458

55681.9

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

resnet mobilenet ssd-small

S
a
m

p
le

s
 p

e
r

s
e
c
o
n
d

Offline

R740-4xT4 R470-3xRTX6000 C4140-V100-SXM2-16GB

546.69

1417.62

1116.66

2910.3

527.137

3119.42

0

500

1000

1500

2000

2500

3000

3500

ssd-large gnmt

S
a
m

p
le

s
 p

e
r

s
e
c
o
n
d

Offline

R740-4xT4 R470-3xRTX6000 C4140-V100-SXM2-16GB

• RTX is 2.7x – 2.9x faster than T4 per GPU

• RTX is 2.8x faster than V100 per GPU for ssd-large, and 1.2x – 1.6x for

other models

39

MLPerf Inference v0.5

• The goal for Server scenario: find the maximum QPS subject to latency bound.

• Search strategy: binary search. The initial left boundary is valid QPS, the initial

right boundary is invalid QPS.

• while(left < right){

mid = left + (right-left)/2;

result = benchmark(system_id, model, Server scenario, qps=mid)

if(result == “VALID”)

left = mid + 1;

else

right = mid;

• }

• right – 1 is the maximum QPS when the result is VALID

40

MLPerf Inference v0.5

• Use jemalloc: scalable concurrency support and reducing memory fragmentation

– LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libjemalloc.so.2

• Use Transparent Huge Pages (THP)

– Performance improvement of 1.69%, 1.38%, and 1.56% for resnet, mobilenet, and ssd-small

– No improvement for ssd-large and gnmt

42000.76

140343.58

57833.07

42711.81

142284.89

58737.97

0

20000

40000

60000

80000

100000

120000

140000

160000

resnet mobilenet ssd-small

Q
P

S

Server

THP=never THP=always

1074.52

1810.46

1074.52

1809.17

0

200

400

600

800

1000

1200

1400

1600

1800

2000

ssd-large gnmt
Q

P
S

Server

THP=never THP=always

41

MLPerf Inference v0.5

20742.83

67124.18

28293.31

42711.81

142284.89

58737.97

0

20000

40000

60000

80000

100000

120000

140000

160000

resnet mobilenet ssd-small

Q
P

S

Server

R740-4xT4 R470-3xRTX6000

485.23

828.57

1074.52

1809.17

0

200

400

600

800

1000

1200

1400

1600

1800

2000

ssd-large gnmt

Q
P

S

Server

R740-4xT4 R470-3xRTX6000

• RTX is 2.7x – 2.9x faster than T4 per GPU

42

Conclusions

• Training
– Docker is not easy to use on multi-node with InfiniBand, an alternate is to use Singularity container

– The performance scales well for ResNet-50 v1.5, SSD and Mask-R-CNN.

– The machine translation models (GNMT and Transformer) have (or need) high network throughput.

– Dual IB does not have significant performance improvement.

• Inference
– Boost clock does not improve the performance

– ECC off can improve the performance obviously

– jemalloc library makes the Server scenario performance more stable

– Transparent Huge Pages (THP) provide performance benefits for Server scenario

– Binary search can search the right QPS for Server scenario efficiently

