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Goal of this session

• Show some possible tuning knobs

• Share results from our tuning

• More RFPs are using MLPerf

• Next version submission
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HPC and DL Engineering - what we do

• Design and build systems for HPC and 

Deep Learning workloads.

• Systems include compute, storage, 

network, software, services, support.

• Integration with factory, software, services.

• Power and performance analysis, tuning, 

best practices, trade-offs.

• Focus on application performance.

• Vertical solutions. 

• Research and proof of concept studies.

• Publish white papers, blogs, conference 

papers (www.hpcatdell.com) 

• Access to the systems in the lab

http://www.hpcatdell.com/
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World-class infrastructure in the Innovation Lab 

Zenith
• TOP500-class system based on Intel Scalable 

Systems Framework (OPA, KNL, Xeon, OpenHPC)

• 424 nodes dual Intel Xeon Gold processors, Omni-

Path fabric.

• +160 Intel Xeon Phi (KNL) servers. 

• Over 1 PF combined performance!

• #265 on Top500 June 2018, 1.86 PF theoretical peak

• Lustre, Isilon H600, Isilon F800 and NSS storage

• Liquid cooled and air cooled

Rattler
• Research/development system with Mellanox, NVIDIA 

and Bright Computing

• 88 nodes with EDR InfiniBand and Intel Xeon Gold 

processors

• 32x PowerEdge C4140 nodes with 4x NVIDIA GPUs

Other systems

• 32 node AMD cluster, storage solutions, etc.

13K ft.2 lab, 1,300+ servers, ~10PB storage dedicated to HPC in collaboration with the community
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MLPerf
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MLPerf training Introduction

Benchmark Dataset Quality Target
Reference 

Implementation Model

Image classification ImageNet (224x224) 75.9% Top-1 Accuracy Resnet-50 v1.5

Object detection (light 

weight)
COCO 2017 23% mAP SSD-ResNet34

Object detection (heavy 

weight)
COCO 2017

0.377 Box min AP, 0.339 

Mask min AP
Mask R-CNN

Translation (recurrent) WMT English-German 24.0 BLEU GNMT

Translation (non-recurrent) WMT English-German 25.0 BLEU Transformer

Recommendation Undergoing modification

Reinforcement learning N/A Pre-trained checkpoint Mini Go

• A broad ML benchmark suite for measuring performance of ML frameworks, ML hardware accelerators, and ML cloud 

platforms.

• Cover different DL domains

• Proper metrics (training time, accuracy)

• Real datasets
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Who did what in MLPerf training v0.6 

MLPerf 
Community

NVIDIA/Others

DELL

• Dell server optimization

• CPU binding

• BIOS HT

• Batch Size/Learning rate/Warm-up steps/etc.

• NCCL P2P & Tree/Ring vs DGX-1 optimized

• Select framework

• Code optimization by each team
• NCCL 2.3 -> 2.4.7

• DALI

• Active function

• Multiple GPU(Horovod)

• DGX optimization
• Batch Size

• etc.

• Define the Sub-benchmarks

• Accuracy

• Models

• Datasets

• Github sample codes 1xP100
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MLPerf v0.5 and v0.6 difference – MLPerf 
community
• Raises quality targets:

• Image classification (ResNet) to 75.9% (v0.5 was 74.9%)

• light-weight object detection (SSD) to 23% mAP (v0.5 was 21.2%)

• recurrent translation (GNMT) to 24 Sacre BLEU (v0.5 was 21.8)

• Allows use of the LARS optimizer for ResNet, enabling additional scaling

• Experimentally allows a slightly larger set of hyperparameters to be tuned
• Enabling faster performance and some additional scaling

• Changes timing to start the first time the application accesses the training dataset, thereby excluding startup 
overhead

• This change was made because the large scale systems measured are typically used with much larger datasets than those in 
MLPerf, and hence normally amortize the startup overhead over much greater training time

• Improves the MiniGo benchmark in two ways
• First, it now uses a standard C++ engine for the non-ML compute, which is substantially faster than the prior Python engine. 

• Second, it now assesses quality by comparing to a known-good checkpoint, which is more reliable than the previous very small 
set of game data

• Suspends the Recommendation benchmark while a larger dataset and model are being created
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Resnet-50 v0.6 improvement - NVIDIA

• Image Classification / ResNet-50 (1.24x 

improvement). Implemented new fused 

convolution + batchnorm kernels through cuDNN

7.6. 
• This optimization drastically reduces the cost of batch 

normalization (a bandwidth-limited operation and does not 

benefit from Tensor Cores) by performing the normalization in 

adjacent convolution layers, as outlined in figure 1.

• A variety of DALI-related improvements 

accelerated the data input pipeline, enabling it to 

keep up with high-speed neural network 

processing. 
• These include using NVJPEG and ROI JPEG decode to limit the 

JPEG decode work to the region of the raw image actually used. 

We also used Horovod for data parallel execution, allowing us to 

hide the exchange of gradients between GPUs behind other 

back-propagation work happening on the GPU. 

Figure 1. New fused convolution + batchnorm

kernels make better use of Tensor Cores and halve 

the number of discrete kernels that need to run
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Testbed
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Dell EMC DSS8440
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C4140M – NVLINK System

• All accelerators are put at the front

• The Only Dell system has NVLINK

• Smaller failure zone

• Dual redundant PSU

GPU0

GPU1

GPU3

GPU2

CPU0 CPU1
UPI

NVLink
PCIe x16 Gen 3

IB slot
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Our cluster

Head Node

FDR – 40GigE Gateway

 ...

 ...

Isilon

Compute Node 0 Compute Node 1 Compute Node n-2 Compute Node n-1

Local Disk

IB EDR Switch1GigE Management switch

Ethernet connection

InfiniBand connection
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Single nodes
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MLPerf results – Original NVIDIA docker 
run on DSS8440

Network
Server - DSS8440

MLPerf v0.5 MLPerf v0.6

ResNet50-v1.5 159.6 139.0

Mask R-CNN 304.0 232.6

SSD 33.2 25.7

NMT 45.3 78.0

Transformer 51.0 26.7

NCF 1.0 N/A

MiniGo N/A 34.0

• Time taken to converge GNMT from v0.5 to 

v0.6 is significantly high. 

• Analysis in the next slides
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GNMT Profiling results

• Analysis using “nvprof” profiling tool show most of the time (524.42s) is spent on 

ncclAllReduceRing communication
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https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/env.html

https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/

https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/env.html
https://devblogs.nvidia.com/massively-scale-deep-learning-training-nccl-2-4/
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GNMT on DSS8440

• NVIDIA docker is 

optimal based on 

DGX-1

• PCIe system need 

fine tune to make 

sure software 

matches with 

hardware topology

• We are able to 

reduce the training 

time from 77 min to 

33 min on 

DSS8440

• Reduces overall 

time to 70%
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Tuning Knobs - HW
• CPU cores frequency

• 6230 2.1 GHz/20cores

• 6248 2.5 GHz/20cores

• 6252 2.1 GHz/24cores

• Memory 2666 vs 2933

• PCIe vs NVLink 

• Except GNMT and Transformer ~30%

• ~10% both single and multiple nodes

• TDP 250 vs 300 W & Higher frequency

• Storage

• Local SSD

• U.2 NVMe

• Isilon

• Lustre

• BIOS
• Custom profile based on HPC 

workload profile

• HyperThreading

• SubNumaCluster

• ADDDC

• GPUs
• V100-PCIe/SXM2

• V100S

• RTX 6000/8000

• Server
• C4140

• DSS8440

• R740
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Tuning Knobs - SW

• Docker version

• Binding with CPU cores

• OS
• Spectre/Meltdown patches

• Dist/Release/Kernel

• GPU Driver

• CUDA toolkit version

• NCCL
• Tree vs Ring

• P2P

• CuDNN

• DALI

• Hyperparameters
• Batch size

• Learning rate

• Etc.

• Frameworks
• Tensorflow

• Pytorch

• MXNet

• Horovod
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MLPerf training v6.0 tuning result

• Haven’t try everything on every 

subtests, some of them applied, 

and it is good enough for showing 

the difference before and after 

tuning
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Know when to stop

• Tuning is time consuming

• Set expectation

• Compare with known results from MLPerf website
– Hyperparameters

– Converged with less or equal epoch_num

– Average results

– Refer to tokens/s, images/s

• Watch GPU utilization >90 TDP > 200/250 W

• Profiling

• Run with multiple systems will help to speed up
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Suggestions for single node tuning

• Run on latest OS or newer kernel

• Use NCCL matching your hardware layout

• Use new CUDA libraries

• Improved performance

• Additional parameters

• Explorer settings in Dockerfile, run.sub, run_and_time, 

config_DGX1.sh, compare with DGX2’s

• Use submitted results files as reference
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Build docker with latest libraries
• [root@node009 gnmt]# cat Dockerfile

• ARG FROM_IMAGE_NAME=nvcr.io/nvidia/pytorch:19.05-py3

• FROM ${FROM_IMAGE_NAME}

• # Install dependencies for system configuration logger

• RUN wget https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb && dpkg -i nvidia-machine-learning-repo-

ubuntu1604_1.0.0-1_amd64.deb

• RUN apt-get update && apt-get install -y --no-install-recommends \

• infiniband-diags \

• pciutils \

• libnccl2 libnccl-dev libcudnn7 libcudnn7-dev && \

• rm -rf /var/lib/apt/lists/* #&& rm nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb

• # Rebuild PyTorch

• WORKDIR /opt/pytorch

• RUN cd pytorch && \

• TORCH_CUDA_ARCH_LIST="5.2 6.0 6.1 7.0 7.5+PTX" \

• CMAKE_PREFIX_PATH="$(dirname $(which conda))/../" \

• NCCL_INCLUDE_DIR="/usr/include/" \

• NCCL_LIB_DIR="/usr/lib/" \

• python setup.py install && python setup.py clean

• # Install Python dependencies

• WORKDIR /workspace/rnn_translator

• COPY requirements.txt .

• RUN pip install --no-cache-dir https://github.com/mlperf/training/archive/6289993e1e9f0f5c4534336df83ff199bd0cdb75.zip#subdirectory=compliance \

• && pip install --no-cache-dir -r requirements.txt

• # Copy & build extensions

• COPY seq2seq/csrc seq2seq/csrc

• COPY setup.py .

• RUN pip install .

• # Copy GNMT code

• COPY . .

• # Configure environment variables

• ENV LANG C.UTF-8

• ENV LC_ALL C.UTF-8
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Multiple nodes
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MLPerf multiple nodes training

• Not easy to use Docker on multi-node with InfiniBand
– The InfiniBand driver version within Docker container may not match the version on the host

– The docker container may not update the IB driver automatically

• Solution:
– convert the base Docker container into Singularity container

– build MLPerf benchmarks within Singularity container

– run Singularity container with Slurm  
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MLPerf Training on C4140 

• Model parallelism requires higher 

bandwidth than data parallelism

• 2 IB adapters doesn’t help a lot for 

performance improvement
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Storage Profiling
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Network Profiling
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Storage and Network Profiling

ResNet-50 SSD Mask-R-CNN GNMT Transformer

Storage

(Gb/s)

2 nodes 7.4 3.9 0.2 0.19 0.26

4 nodes 16 3.1 0.42 0.28 0.34 

8 nodes 18 4.8 1.2 0.3 0.26 

Network

(Gb/s)

2 nodes 3.8 1.4 4.4 12 11.6

4 nodes 4 4.8 7.6 36 24.8

8 nodes 4.2 7.6 7.2 48 24.8
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Inference v0.5
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MLPerf Inference v0.5 Benchmark

Source: https://arxiv.org/pdf/1911.02549.pdf
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MLPerf Inference v0.5

Source: https://arxiv.org/pdf/1911.02549.pdf



35

Single stream 

e.g. cell phone 

augmented vision

Multiple stream 

e.g. multiple camera 

driving assistance

Server

e.g. translation site

Offline

e.g. photo sorting 

Latency

Number streams 

subject to latency 

bound

QPS

subject to latency 

bound

Throughput

MLPerf Inference v0.5

Source: https://arxiv.org/pdf/1911.02549.pdf
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MLPerf Inference v0.5

• Test Server: R740/C4140

• GPUs: 4x T4/ 3x RTX6000 /4x V100-SXM2 16GB

• Inference Backend: TensorRT 6.0

• Benchmarks: 
– ResNet50-v1.5

– MobileNet

– SSD-MobileNets-v1

– SSD-ResNet34

– GNMT

• Inference Scenarios: Server, Offline
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MLPerf Inference v0.5
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• Tested with 3x RTX 6000
• Boost clock does not improve the performance

• ECC off can improve the performance by 3.41% to 14.29%
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MLPerf Inference v0.5
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• RTX is 2.7x – 2.9x faster than T4 per GPU

• RTX is 2.8x faster than V100 per GPU for ssd-large, and 1.2x – 1.6x for 

other models
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MLPerf Inference v0.5

• The goal for Server scenario: find the maximum QPS subject to latency bound.

• Search strategy: binary search. The initial left boundary is valid QPS, the initial 

right boundary is invalid QPS.

• while(left < right){

mid = left + (right-left)/2;

result = benchmark(system_id, model, Server scenario, qps=mid)

if(result == “VALID”) 

left = mid + 1;

else 

right = mid;

• }

• right – 1 is the maximum QPS when the result is VALID
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MLPerf Inference v0.5

• Use jemalloc: scalable concurrency support and reducing memory fragmentation

– LD_PRELOAD=/usr/lib/x86_64-linux-gnu/libjemalloc.so.2

• Use Transparent Huge Pages (THP)

– Performance improvement of 1.69%, 1.38%, and 1.56% for resnet, mobilenet, and ssd-small

– No improvement for ssd-large and gnmt
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MLPerf Inference v0.5
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• RTX is 2.7x – 2.9x faster than T4 per GPU 
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Conclusions

• Training
– Docker is not easy to use on multi-node with InfiniBand, an alternate is to use Singularity container

– The performance scales well for ResNet-50 v1.5, SSD and Mask-R-CNN.

– The machine translation models (GNMT and Transformer) have (or need) high network throughput.

– Dual IB does not have significant performance improvement.

• Inference
– Boost clock does not improve the performance

– ECC off can improve the performance obviously

– jemalloc library makes the Server scenario performance more stable 

– Transparent Huge Pages (THP) provide performance benefits for Server scenario

– Binary search can search the right QPS for Server scenario efficiently




