
Filesystem Aware Scalable I/O Framework for Data-Intensive Parallel Applications

Rengan Xu

Department of Computer Science
University of Houston

Houston, USA
uhxrg@cs.uh.edu

Mauricio Araya-Polo

Geophysics Development
Repsol

Houston, USA
araya.mauricio@repsol.com

Barbara Chapman

Department of Computer Science
University of Houston

Houston, USA
chapman@cs.uh.edu

Abstract—The growing speed gap between CPU and memory
makes I/O the main bottleneck of many industrial applica-
tions. Some applications need to perform I/O operations for
very large volume of data frequently, which will harm the
performance seriously. This work’s motivation are geophysical
applications used for oil and gas exploration. These applications
process Terabyte size datasets in HPC facilities [6]. The
datasets represent subsurface models and field recorded data.
In general term, these applications read as inputs and write
as intermediate/final results huge amount of data, where the
underlying algorithms implement seismic imaging techniques.
The traditional sequential I/O, even when couple with advance
storage systems, cannot complete all I/O operations for so
large volumes of data in an acceptable time range. Parallel
I/O is the general strategy to solve such problems. However,
because of the dynamic property of many of these applications,
each parallel process does not know the data size it needs
to write until its computation is done, and it also cannot
identify the position in the file to write. In order to write
correctly and efficiently, communication and synchronization
are required among all processes to fully exploit the parallel
I/O paradigm. To tackle these issues, we use a dynamic load
balancing framework that is general enough for most of these
applications. And to reduce the expensive synchronization
and communication overhead, we introduced a I/O node that
only handles I/O request and let compute nodes perform
I/O operations in parallel. By using both POSIX I/O and
memory-mapping interfaces, the experiment indicates that our
approach is scalable. For instance, with 16 processes, the
bandwidth of parallel reading can reach the theoretical peak
performance (2.5 GB/s) of the storage infrastructure. Also,
the parallel writing can be up to 4.68x (speedup, POSIX
I/O) and 7.23x (speedup, memory-mapping) more efficient
than the serial I/O implementation. Since, most geophysical
applications are I/O bounded, these results positively impact
the overall performance of the application, and confirm the
chosen strategy as path to follow.

Keywords-Parallel I/O, Parallel File System, Dynamic Load
Balancing

I. INTRODUCTION

Most industrial applications found that their performance

bottleneck is I/O rather than computing. The reason is at

least twofold: these applications are data intensive and/or

the widening performance gap between the processor and

memory or secondary storage. In our case, both mentioned

issues are present, we are dealing with Terabytes like

datasets, which not even modern HPC data storage systems

can handle proper. Our target applications are already op-

timized in terms of computing (including parallelization),

but not regarding I/O. Actually, further we enhanced the

computing performance wider the gap with I/O performance

becomes, which implies that most of the performance gains

are shadowed by the storage stack. Our research focused on

I/O improvements that close the aforementioned gap. The

parallel nature of the target applications is one of the obvious

path to follow. I/O operations in parallel applications can

be performed by either threads or MPI processes. In this

context, we will only consider MPI processes, but our results

and conclusions are general, the same ideas can be exploited

by other parallel constructs.

The traditional way to perform I/O operations is serial,

which means multiple processes perform I/O operations

on the same file alternatively. Also, an I/O coordinator

process scheme can be deploy, where only the coordinator

process is allowed to access a file after other processes have

transferred the data to it. This has negative effect since

when one process is accessing a file, other processes are

waiting to complete all their I/O operations. An effective

way to solve this issue is to use parallel I/O. The idea

is simple, multiple processes access the same file simul-

taneously. However, parallel I/O implementations are not

trivial, since relies on HW capabilities that it is preferable

to hid to the application. Therefore, a parallel I/O system is

comprised of several components, including the high-level

application, parallel I/O interface, parallel file system and the

underlying RAID-capable [9] storage system. Our approach

targets geophysical applications, to which we introduce

POSIX I/O and memory-mapping interfaces, where Panasas

parallel file system and RAID 1/5 storage hardware are the

underlying storage platform. We develop a general dynamic

load balancing framework, and introduce an I/O coordinator

that handles I/O requests from compute nodes, in order

to reduce the communication and synchronization overhead

among compute nodes. Before to go into details of our

approach, in Section II we review the state of the art related

to the problem at hand. In Section III we describe our

approach in details. In Section IV the experimental results

are introduced and discussed. Finally, we close this work in

Section V with our conclusions.

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.196

2007

II. RELATED WORK

PLFS [7] is a interposition layer inserted between parallel

application and underlying parallel file system. It convertes

a N-1 write access pattern into a N-N write access pattern

to improve write bandwidth. Each write appends the data

into corresponding data file and appends a record into the

appropriate index file. This model would generate lots of

directories, data files and indices if thousands of processes

are used in an application, which leads to complex files man-

agement work, while our model only generate one data file

and one index. ADIOS [13] provides a flexible approach for

I/O within scientific codes. The end user can choose different

I/O routines in external XML metadata file without touching

the source code. The richly annotated XML file provides

the entry of several well-tuned transport methods (POSIX,

MPI I/O, pnetCDF [4] and HDF5 [1], etc.) for different

platforms. ADIOS provides an abstraction of different I/O

APIs, but unlike us it didn’t consider the execution model of

parallel applications. Darshan [8] is an characterization tool

that can capture the applicatino I/O behavior, e.g. patterns

of access within files, with minimum possible overhead. By

characterizing four scientific applications, it demonstrated its

effective scalability and viability for 24/7 characterization

of petascale I/O workloads. IISche et al. [10] integrated

the I/O Forwarding Scalability Layer (IOFSL) [5] with the

VampirTrace/OTF toolset [11]. They added a distributed

atomic file append capability into the I/O forwarding layer.

IOFSL provides a client-server communication model and

the clients simply need to deliver the data to to be written

into the file to the server. The server returns to the client the

file offset where the data was written. In this model servers

can write files simultaneously, but it is limited by the number

of servers. Lusk et al. [14] implemented an asynchronous

dynamic load balancing (ALDB) library in which there are

several servers and many application processes. This library

solves load balancing problem but does not consider parallel

I/O issue. Latham et al. [12] implemented MPI I/O shared

file pointers within ROMIO [17]. Their algorithm defined

two shared data structures N-byte waitflag and MPI Offset-

sized sharedfp and store them on a single process. The

communication among all processes was done by one-sided

communication.

Benchmarking plays an important role in our work, and

so in this paragraph we present a couple benchmark suites.

IOZone [3] benchmark can be used to test the throughput of

a file system, and IOR [2] can benchmark the I/O bandwidth

of a parallel file system with POSIX, MPI I/O and HDF5

interfaces.

III. METHODOLOGY

In this section we introduce our approach, which is

based on two main aspects: scheduling (subsections III-A)

and parallelism (III-B). Then we review implementa-

tion/performance ideas (subsection III-C and III-D). Finally,

we discuss relevant considerations regarding our storage

system (subsection III-E).

A. Task Scheduling Strategy

One of most important step during application paralleliza-

tion is to determine how to schedule the tasks into processes.

The scheduling can be both static and dynamic. Static

scheduling include block distribution, cyclic distribution

and block-cyclic distribution and so on. This scheduling

determines the number of workloads for each process at the

beginning of execution and it will not change in runtime.

Figure 1. Dynamic Load Balancing Framework, master process view

In theory, this is suitable for the cluster in which the

configuration of all nodes are exactly the same. In reality,

however, we found that even if all nodes in a cluster are

identical, many other factors will disturb the execution of

application. As a result, even when the assigned workloads

for all nodes are the same, the nodes will not finish their

work at the same time. The gap between their finish time

is huge when the execution time of application is long

enough and all nodes use shared resources (such as storage

systems and networking). The nodes who finish earlier need

to wait for the nodes who finish later, which will waste

the system resource. The dynamic scheduling is required

for large application so that the scheduling is dynamic in

runtime and the nodes do not need to wait for each other.

Figure 1 shows the dynamic load balancing framework

which uses Master/Worker model. The master process is re-

sponsible to keep the workload balanced among all workers.

At the beginning of the application, the whole workload

is partitioned into many unit works and put into a unit

works queue. Then the master assigns one unit of work

from the work queue to each worker. Whenever a worker

finishes its computation and writes the corresponding data,

it will send a message to the master to notify it that its unit

work is done. As a result, the worker whose is processing

faster will get more work, whereas those processes who are

slower will get less work. This approach ensures a good

load balancing over heterogeneous nodes, especially when

the computational demands for each unit work are different,

which actually the case with the geophysical applications

2008

at hand. The master keeps monitoring the status of the

work queue and put their status into another queue. The

work status queue is written into storage periodically by

the master for restarting the application in case of failure

(checkpointing), an important feature on a large distributed

system where one node may be down anytime during the

execution.

Figure 2. Parallel I/O Design in Target Applications

B. Our Parallel I/O Approach

In most parallel applications, the general steps are reading

data, computing and then writing the result data. In our case,

the input data is usually composed by many files (seismic

data) with an aggregate size of under 500 TeraBytes (TB),

the resulting data is usually a limited number of huge files,

aggregate size of under 50 TB (seismic models and images).

Since multiple processes are working (up to one process

per computational node core, and up to 500 computational

nodes, where every process writes GigaBytes (GB) of data),

the writing to the share output files is usually serialized to

avoid contention, or the data is collected into one process

and written down by that process. In both situations, the

writing is sequential which greatly limits the performance of

the application. Therefore, parallel I/O is a must to reduce

this bottleneck. With parallel I/O, different processes write

to different portions of a common file in parallel. The key

point is to know the position to write for each process.

However, in some of our target applications, each process

does not know how much data it needs to write until the

computation is finished. Therefore, each process is not able

to locate the position to write its own data within the share

files. We can assume that the maximum size of data each

process will write is known, so one solution is to create a

file with maximum size for all processes. Then each process

can write data to its own region. This solution, however,

requires huge space in storage, and in average the processes

will not fully occupy their portion. Also, as a result, the

actual written data is a not contiguous GB to TB file. To

make the file compact, each process should write at the end

position of another process. In this way, the written data

is contiguous in the file. And to maintain such contiguous

property, communication and synchronization are required

for all processes to exchange their data information before

writing.

The solution needs to reduce the communication and

synchronization overhead. Therefore, our approach is to add

another process (in a specific node) that only coordinates

I/O operations, thus only one node handles I/O requests.

Figure 2 illustrates this idea. This diagram shows that once

a process has finished its computation, it will submit a

writing request to I/O node informing it how much data

it needs to write, then the I/O node replies back with the

writing position and then update the new global position.

Thus, essentially implementing a I/O FIFO mechanism,

where all compute nodes write data directly and in parallel.

Algorithm 1 shows the detailed implementation. Thanks

to this approach, the synchronization overhead among all

compute nodes is eliminated and the only communication

left is between compute nodes and I/O node. Note that

the whole application still uses dynamic load balancing

framework, then the master becomes I/O node and workers

become compute nodes. Since the writing order is random,

another auxiliary file is needed to to record the writing order

and position of each worker writing. When the application

needs to read this file, only trivial preprocessing is needed.

����

����

����

����

����

����

����

���	 �
 �
 �
 �

�

�

����������

���������

Figure 3. Bandwidth with Different Buffer Size

C. Buffered I/O

To reduce I/O system calls and increase efficiency, we use

buffered I/O. The buffer size should neither be too small nor

too large, so we need to explore the best buffer size that fits

well within the system. Since we use parallel file system, the

buffer size should be both page-aligned (multiple of 4 KB

in our system) and stripe-aligned (multiple of parity stripe

width). From subsection III-E, we know that the parity strip

width size is 512 KB. The reason to be stripe-aligned is also

explained in subsection III-E, but boiled down to avoid the

stripe lock contention. The typical buffer sizes are 512 KB, 1

MB, 2 MB, 4 MB and 8 MB. To choose the one that gives

best performance, we write 1 GB of data by one process

with different buffer sizes. Figure 3 shows the result of this

2009

Algorithm 1: Framework of Parallel I/O Approach

Input: Input data of an application

Output: Output result file of the application

I/O Node (Master):
Determine total number of unit works;

forall workers of compute nodes do
Send one unit work to the worker;

Get next unit work;
end
Initialization of data structures for the auxiliary file;

while unit work <total works do
Receive the local I/O size of a worker from any

source;

Determine the worker from MPI status;

Record the order and local I/O size of that worker

into auxiliary file;

Get current global position and send message to

that worker with I/O tag;

Update the new global position in the result file;

Send a new unit work to that worker;

Get next unit work;
end
/* No availale work anymore, receive

results from workers */
forall workers of compute nodes do

Receive the local I/O size of a worker from any

source;

Determine the worker from MPI status;

Record the order and local I/O size of that worker

into auxiliary file;

Get current global position and send message to

that worker with I/O tag;

Update the new gloabl position in the result file;
end
forall workers of compute nodes do

Send message with EXIT tag to the worker;

end

Compute Nodes (Workers):
/* Keep receiving messages from master

until informed to exit */
while true do

Receive message from master and determine the

message tag;

if tag == WORK then
Read input data, do computation and get partial

result data;

Send message with I/O tag to master telling it

how much data it needs to write;

Receive message with I/O tag from master to

get the global file position to write;

Start to write data with caching optimization;
else

/* The tag is EXIT */
break;

end
end

experiment and it indicates that 4 MB is the best buffer size

as it allows the highest bandwidth.

D. POSIX I/O and Memory-mapped file

POSIX I/O is the most basic I/O interface which uses

lseek() to locate the position in a file, and uses read() and

write() to read data from and write to a file. Memory-mapped

file uses memory mapping technique to map a file on disk,

byte-to-byte to the address space of a process. This technique

does not need to use lseek(), read() or write() system calls.

After mapping the file, we can access this file as simple

as accessing memory. In addition, multiple processes can

map the same file into memory so that the data is shared

among all processes. However, the memory mapping size

must always be multiple of page size, or the difference

between the memory mapped size and the actual file size

would be wasted. It also has page fault overhead when first

accessing the file. This is because after mapping the file,

the mappping exists only in the process’ virtual memory

and system has not allocated main memory for that file.

When the file is first accessed, it produces a page fault error

then the system load the file from disk to memory. We will

use both of these two interface (POSIX I/O and memory-

mapping) to test parallel I/O performance.

E. Storage System Considerations

Since our storage system is based on Panasas products,

we look for optimize its utilization. During I/O operations,

the data on a client (compute node) can be classified in two

categories: clean data and dirty data. Clean data means that

the data which is in the cache of a client is the same as

the data currently stored on storage, while dirty data means

the data in the cache of a client is different than the data

currently stored on storage. Panasas supports two writing

modes, Read/Write (RW) and Concurrent Write (CW) mode.

In RW mode, multiple clients have opened the file and at

Figure 6. Stripe Lock Contention Example

least one of them is writing to the file. It is not able to

cache the clean data since the file is changing, and the write

client is not able to cache its dirty data since other clients

need to read from this file. To relax RW mode, Panasas

also supports another advanced caching mode called CW

mode, in which every client does not need to see the latest

data that other clients have written. To test the performance

2010

Figure 4. Load Balanced Profiling Result

Figure 5. Load Unbalanced Profiling Result

difference between RW and CW mode, 4G data is written

by two processes under the above described modes. As we

expected, the performance of CW mode (147.86 MB/s) is

much better than RW mode (11.54 MB/s). The reason is that

it does not need consistent view among all clients, every

client just needs to keep the correct view of its own portion

of data. We use CW mode in all of our parallel writing

experiments.

Even within CW mode, when two processes write close

to each other, performance still may be degraded. Figure 6

shows such an example. In this example, the parity stripe

width is 4 and one of blades stores parity. Process 1 writes

its data into part of storage blade 1 and 2, and process 2

writes its data into part of storage blade 2 and 3. Because

parity needs to be updated, process 1 reads old data 1, 2,

old parity and its new data to update the new parity, in the

mean while process 2 also needs to read corresponding old

data, old parity and its new data to update the same parity.

The conflict appears because they want to update the same

parity simultaneously. To guarantee the correctness of new

parity, the parallel writing would be serialized internally by

a ”stripe lock”.

To avoid such lock contention, writes should be stripe

aligned which means the size of each writing should be

multiple of parity stripe width size. Notice that parity strip

is only logical view which depends on the total number of

available storage blades in the hardware. In our case, after

some modulo operation, we will get stripe width size as

512 KB. In Panasas, large file is stored in two-level RAID

1/5 groups [15], each RAID 1/5 is a shelf which has 1

director blade and 10 storage blades. We have three shelves,

so there are 30 storage blades in total. In our hardware, two

logical spare-equivalent blades are configured for rebuild

purpose, therefore 28 storage blades could actually be used

for parallel writing in programmer’s view. The typical parity

stripe width are 8, 9, 10 and 11. We module 28 against

2011

these stripe widths and choose the one that has the smallest

remainder. Based on this modulo operation , we choose 9 as

the stripe width because it has the least remainder. Because

one storage blade of the parity strip needs to store parity

and each strip unit size is 64K, we got stripe width size as

64K ∗ (9− 1) = 512K.

IV. EXPERIMENTAL SET-UP AND RESULTS

A. Experimental Set-up

For all carried out experiments described Panasas parallel

file system has been used. This system is confugred as

a RAID 1/5 which is the combination of RAID 1 and

RAID 5. In Panasas, each shelf is RAID 1/5 which has 1

DirectorBlade and 10 StorageBlades [18] and each blade

has two disks. The shelves are connected to the network

with a 10 Gbit/s Ethernet switch which also connect to

the cluster. The compute nodes are connected by Infiniband

(bandwidth is 40 Gbit/s). All parallel I/O experiments use the

dynamic load balancing parallelization framework described

in Section III-B. Multiple processes read from or write to

non-overlapping locations in one file. We always use one

MPI process per node because the applications use OpenMP

or pthreads [16] to parallelize the computing within node.

All experiment results are averaged value after removing the

outliers.

Table I
CONFIGURATION OF EACH NODE IN THE CLUSTER

Item Description
Machine Type x86 64
CPU Model Intel Xeon X5675
CPU Cores 12 (6 x 2 sockets)
CPU Speed 3.07GHz

Memory Total 48G

We tested the parallel I/O performance for 100 GB data

file with 1, 2, 4, 8 and 16 nodes. The nodes number

in the result figures means compute nodes, excluding I/O

node since it does not perform any I/O operations. When

memory-mapping technique is used, since there is a limit for

memory-mapping size and we use dynamic load balancing

framework, for each iteration we map only 256 MB into

main memory.

B. Experimental Results

Figure 4 shows an example profiling result of our ap-

proach. The test case uses 4 compute nodes and 1 I/O

node with memory-mapping interface. The application has

an initial synch point because at first the I/O node needs

to create a file for other compute nodes to open, then a

synchronization is needed before accessing this file. The

I/O node then keeps waiting for messages from compute

nodes and replies to them. It can be observed that there is

no synchronization in the middle of writing, and compute

nodes does not need to communicate to each other. Finally,

they almost finish at the same time point. We can see that

the workload is distributed to all compute nodes in balance.

To compare our scheduling with static scheduling strategy,

Figure 5 shows an example profiling result of using static

scheduling in which the tasks for each compute node are

determined at the beginning. The profiling result indicates

that some processes are idle and waiting for other processes

after they finish their own work, although they could do the

rest work. It is obvious to conclude that our scheduling is

better than static scheduling.

��

����

�����

�����

�����

�����

�����

� � � � ��

�
�

�

	
��
��������
�

����
������������ !"#$�#
!%
&
�������������� !"#$�#
!%

�����
�������������
���'(��))��*%
�&
���������������
���'(��))��*%

Figure 7. Bandwidth of Parallel I/O

Figure 7 shows the bandwidth of parallel I/O experiments

when using both POSIX I/O and memory-mapping. The

result indicates that with both interfaces, the performance of

both read and write operations increase with more nodes.

The read bandwidth reaches the theoretical peak perfor-

mance (for our platform) starting from 8 nodes with POSIX

I/O and 4 nodes with memory-mapping. The read operation

performance is around 3-4 times the write operation per-

formance. The reason why writing is slower than reading

is that writing pushes the data into storage, while reading

pulls the data out of storage, and the cost of pushing is much

higher than pulling. Further, writing operation has 11% (1/9)

writing overhead, because we need to store parity in 1 out of

9 storage blades, this is a panasas configuration constraint.
Figure 8 shows the speedup of using multiple nodes with

POSIX I/O and memory-mapping. With both interfaces,

the speedup of both read and write scales when the num-

ber of nodes increases. With POSIX I/O, the speedup of

write is slightly better than read although the bandwidth

of write is lower than read. The reason why both read

and write have not reached the ideal speedup is that we

are executing a real production level application with our

framework, then the execution time includes the computing

time of the application rather than pure I/O operations. Also,

time measurements include the overhead of communication

between compute nodes and I/O node, the status queue

management and the memory allocation and de-allocation

for data buffer, etc. Further, the data must go through the

2012

��

��

��

��

���

���

���

���

� � � ��

�	

��
	

���
��������
�

��
����	

��	
����
��	

��	�����������
!
����	

��	�����������

����
��	

��	��"
���#$��		��%
!
����	

��	��"
���#$��		��%

Figure 8. Speedup of Parallel I/O

network between the cluster and storage system, and this

network is shared by all users of the cluster. Thus, we carried

out the experiments in shared situation which means other

users were also performing I/O operations at the same time.

We noticed that with the same number of nodes, the read

bandwidth with memory-mapping is higher than that with

POSIX I/O. The reason may be that the paging operation

of the memory-mapping is much more efficient than read()
system call. However, memory-mapping write bandwidth is

lower than that with POSIX I/O, the reason is that the high

overhead of page fault error while loading the file from disk

to memory. In our experiments, we map only one portion

of file into memory and write only once. The memory-

mapping is the way to go when one portion of file is mapped

to memory and then that portion is frequently accessed

in memory. Also, it can be observed that with memory-

mapping, write speedup is higher than read in almost all

cases.

Table II
ELAPSED TIME COMPARISON BETWEEN DIFFERENT APPROACHES (TIME

IN SECONDS), DATASET SIZE 100 GB, ONLY WRITING OPERATIONS NO

READ OPERATIONS INCLUDED. IN 1 (DISK-BASED STRATEGY) EVERY

WORKER WRITES ITS OUTPUT TO THE STORAGE SYSTEM, THEN THE

MASTER READS ONE-BY-ONE THOSE OUTPUTS FROM THE STORAGE

SYSTEM AND PROCESS THEM, IN 2 (NETWORK-BASED STRATEGY)
EVERY WORKER SENDS ITS OUTPUT TO THE MASTER, WHICH RECEIVE

AND PROCESS THOSE OUTPUTS IN SERIAL FASHION

I/O Approach Nodes
1 4 8 16

Serial1 (POSIX I/O) 2007.19 2777.92 3805.56 5860.84
Serial2 (POSIX I/O) 1770.28 1830.28 1910.28 2070.28
Parallel (POSIX I/O) 875.14 313.35 223.94 187.06

Serial1 (Memory-mapping) 3574.04 4318.88 5312.01 7298.24
Parallel (Memory-mapping) 1662.88 493.09 275.45 229.94

Finally, in order to quantify the impact of our I/O

approach into the application performance, we introduce

Table II and Table III. It can be observed that overall

execution time of the parallel write version is 31.3x (POSIX

I/O) and 31.7x (Memory-mapping) faster than the serial

write version, and parallel read version is 251.36x (POSIX

I/O) and 669.86x (Memory-mapping) faster than the serial

read version. This means a reduction of the execution time

from hours to few minutes. It is noticed that the serial

memory-mapping read is extremely time consuming which

is because the data needs to be swapped into disk every time

the master send data to each worker.

Table III
ELAPSED READ TIME COMPARISON BETWEEN DIFFERENT APPROACHES

(TIME IN SECONDS), DATASET SIZE 100 GB, ONLY READ OPERATIONS

NO WRITE OPERATIONS INCLUDED. IN 1 (DISK-BASED STRATEGY), THE

MASTER READS THE INPUT DATA AND THEN SEND THE DATA SERIALLY

TO EACH WORKER THROUGH THE DISK, IN 2 (NETWORK-BASED

STRATEGY), THE MASTER READS THE INPUT DATA AND SENDS TO EACH

WORKER THROUGH THE NETWORK.

I/O Approach Nodes
1 4 8 16

Serial1 (POSIX I/O) 1388.96 4014.38 7514.94 14516.06
Serial2 (POSIX I/O) 276.91 336.91 416.91 576.91
Parallel (POSIX I/O) 256.91 97.18 64.71 57.75

Serial1 (Memory-mapping) 2159.44 7148.08 13799.60 27102.64
Parallel (Memory-mapping) 248.28 86.33 55.64 40.46

V. CONCLUSION

This paper proposed a parallel I/O solution to parallel ap-

plications which manage large datasets. Our solution reduces

the global synchronization and communication overhead

among all processes significantly. We also adopted a dy-

namic load balancing framework which uses master/worker

model to ensure load balancing among all processes, es-

pecially in a heterogeneous network. This framework can

be widely applied in most parallel applications. Although

we used a specific experiment environment, our approach

is independent of any parallel file system and hardware.

Adapting it to other platforms will only require to set the

proper parameters, such as stripe unit size, parity stripe

width size and buffer size. By using POSIX I/O and

memory-mapping interfaces along with our framework, we

have achieved impressing bandwidth and speedup results,

in some cases close to peak platform performance. All this

result in up 30x write improvement and at least 250x read

improvement than the worst serial scenario on the overall

execution time of the applications at hand, which greatly

impact the projects turnaround when these applications are

deployed. Facing the reality of Big Data and widening gap

between I/O storage and computing performance, simple but

robust frameworks -like the one we proposed- can mitigate

the I/O related bottlenecks, which will be a step forward

towards a better balance computing platforms. Regarding

future work, we will explore using multiple I/O nodes if

the I/O requests to one I/O node is too intensive, this is the

case when the total number of nodes goes beyond thousands

or the test cases produces many work units. Also, we will

extend our approach to the multi-core level, as there are

some research focusing on message passing between threads,

2013

which will enable finer level granularity, therefore open the

framework for a wider set of scenarios in terms of testcases

and algorithms.

ACKNOWLEDGMENT

The authors would like to thank Repsol for allow us to

present this work, and University of Houston for constant

support.

REFERENCES

[1] HDF5. http://www.hdfgroup.org/HDF5.

[2] IOR. http://sourceforge.net/project/ior-sio.

[3] IOZone. http://www.iozone.org.

[4] PnetCDF. http://trac.mcs.anl.gov/projects/parallel-netcdf.

[5] N. Ali, P. Carns, K. Iskra, D. Kimpe, S. Lang, R. Latham,
R. Ross, L. Ward, and P. Sadayappan. Scalable I/O Forward-
ing Framework for High-performance Computing Systems.
In Cluster Computing and Workshops, 2009. CLUSTER’09.
IEEE International Conference on, pages 1–10. IEEE, 2009.

[6] Araya-Polo M., Cabezas J., Hanzich M., Pericas M., Rubio
F., Gelado I., Shafiq M., Morancho E., Cela J.M., Valero
M. Assessing Accelerator-Based HPC Reverse Time Migra-
tion. IEEE Transactions on Parallel and Distributed Systems,
22(1):147 – 162, January 2011.

[7] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczyn-
ski, J. Nunez, M. Polte, and M. Wingate. PLFS: A Checkpoint
Filesystem for Parallel Applications. In Proceedings of the
Conference on High Performance Computing Networking,
Storage and Analysis, page 21. ACM, 2009.

[8] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley.
24/7 Characterization of Petascale I/O Workloads. In Cluster
Computing and Workshops, 2009. CLUSTER’09. IEEE Inter-
national Conference on, pages 1–10. IEEE, 2009.

[9] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, and D.A.
Patterson. RAID: High-performance, Reliable Secondary
Storage. ACM Computing Surveys (CSUR), 26(2):145–185,
1994.

[10] T. Ilsche, J. Schuchart, J. Cope, D. Kimpe, T. Jones,
A. Knüpfer, K. Iskra, R. Ross, W.E. Nagel, and S. Poole.
Enabling Event Tracing at Leadership-Class Scale through
I/O Forwarding Middleware. In Proceedings of the 21st
international symposium on High-Performance Parallel and
Distributed Computing, pages 49–60. ACM, 2012.

[11] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber,
H. Mickler, M.S. Müller, and W.E. Nagel. The Vampir
Performance Analysis Tool-set. Tools for High Performance
Computing, pages 139–155, 2008.

[12] R. Latham, R. Ross, R. Thakur, and B. Toonen. Implementing
MPI-IO Shared File Pointers without File System Support.
Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 84–93, 2005.

[13] J.F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and
C. Jin. Flexible IO and Integration for Scientific Codes
Through The Adaptable IO System (adios). In Proceedings
of the 6th international workshop on Challenges of large
applications in distributed environments, pages 15–24. ACM,
2008.

[14] E.L. Lusk, S.C. Pieper, R.M. Butler, et al. More Scalability,
Less Pain: A Simple Programming Model and its Implemen-
tation for Extreme Computing. SciDAC Rev, 17:30–37, 2010.

[15] D. Nagle, D. Serenyi, and A. Matthews. The Panasas
Activescale Storage Cluster: Delivering Scalable High Band-
width Storage. In Proceedings of the 2004 ACM/IEEE
conference on Supercomputing, page 53. IEEE Computer
Society, 2004.

[16] B. Nichols, D. Buttlar, and J.P. Farrell. Pthreads Program-
ming. O’Reilly Media, Incorporated, 1996.

[17] R. Thakur, W. Gropp, and E. Lusk. On Implementing MPI-
IO Portably and with High Performance. In Proceedings of
the sixth workshop on I/O in parallel and distributed systems,
pages 23–32. ACM, 1999.

[18] Brent Welch, Marc Unangst, Zainul Abbasi, Garth Gibson,
Brian Mueller, Jason Small, Jim Zelenka, and Bin Zhou.
Scalable Performance of the Panasas Parallel File System.
In Proceedings of the 6th USENIX Conference on File and
Storage Technologies, FAST’08, pages 2:1–2:17, Berkeley,
CA, USA, 2008. USENIX Association.

2014

