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Abstract. OpenACC is an emerging directive-based programming model
for programming accelerators that typically enable non-expert program-
mers to achieve portable and productive performance of their applica-
tions. In this paper, we present the research and development challenges,
and our solutions to create an open-source OpenACC compiler in a main
stream compiler framework (OpenUH of a branch of Open64). We discuss
in details our loop mapping techniques, i.e. how to distribute loop itera-
tions over the GPGPU’s threading architectures, as well as their impacts
on performance. The runtime support of this programming model are
also presented. The compiler was evaluated with several commonly used
benchmarks, and delivered similar performance to those obtained using a
commercial compiler. We hope this implementation to serve as compiler
infrastructure for researchers to explore advanced compiler techniques,
to extend OpenACC to other programming languages, or to build per-
formance tools used with OpenACC programs.

1 Introduction

Computational accelerators that provide massive parallelism such as NVIDIA
GPGPUs and Intel Xeon Phi, or those that provide special-purpose application
engines such as DSP have become viable solutions to build high performance
supercomputers, as well as special-purpose embedded systems. However, one of
the critical challenges to fully exploit the hardware computation capabilities is
the need for productive programming models. OpenCL and CUDA are widely-
used low-level programming models designed for programming GPGPUs. These
two programming models require rewriting of most of the application program
from its CPU version that users want to offload to accelerators. This has been
known to be a non-productive approach.

OpenACC [5] is an emerging standard for programming accelerators in het-
erogeneous systems. The model allows developers to mark regions of code for ac-
celeration in a vendor-neutral manner. It is built on top of prior efforts adopted
by several compiler vendors (notably PGI and CAPS Enterprise). OpenACC
is intended to enable programmers to easily develop portable applications to
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maximize performance and power efficiency of the hybrid CPU/GPU architec-
ture. Compiler implementaiton and enhancement in the model are underway by
several industry compilers, notably from Cray, PGI and CAPS. However, their
source codes are mostly inaccessible to researchers and they cannot be used
to gain an understanding of the OpenACC compiler technology or to explore
possible improvements and suggest language extensions to the model.

In this paper, we present our experience of constructing an OpenACC com-
piler in the OpenUH open source compiler framework [10], with goals to enable a
broader community participation and dialog related to this programming model
and the compiler techniques to support it. We also hope this implementation to
serve as compiler infrastructure for researchers that are interested in improving
OpenACC, extending the OpenACC model to other programming languages,
or building tools that support development of OpenACC programs. Specifically,
the features of the compiler and our contributions are summarized as follows:

1. We constructed a prototype open-source OpenACC compiler based on a
branch of main stream Open64 compiler. Thus the experiences could be
applicable to other compiler implementation efforts.

2. We provide multiple loop mapping strategies in the compiler on how to
efficiently distribute parallel loops to the threading architectures of GPGPU
accelerators. Our findings provide guidance for users to adopt suitable loop
mappings depending on their application characteristics.

3. OpenUH compiler adopts a source-to-source approach and generates read-
able CUDA source code for GPGPUs. This gives users opportunities to
understand how the loop mapping mechanism are applied and to further
optimize the code manually. It also allows us to leverage the advanced opti-
mization features in the backend compilation step by the CUDA compiler.

We evaluate our compiler with several commonly used benchmarks, and
showed the similar performance results to those obtained using a commercial
compiler. The remainder of this paper is organized as follows: Section 2 gives
an overview of OpenACC model. Section 3 presents implementation details of
the OpenACC compiler. Section 4 shows the detail of runtime support. Section
5 discusses the results and evaluation. Section 6 provides a review of the related
work. Conclusion and future work are presented in Section 7.

2 Overview of OpenACC Programming Model

OpenACC is a high-level programming model that can be used to port existing
HPC applications on different types of accelerators with minimum amount of
effort. It provides directives, runtime routines and environment variables as its
programming interfaces. The execution model assumes that the main program
runs on the host, while the compute-intensive regions of the program are of-
floaded to the attached accelerator. The accelerator and the host have separate
memory, and the data movement between them need to be handled explicitly.
OpenACC provides different types of data transfer clauses and runtime call in
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its standard. To reduce the performance impacts of data transfer latency, Ope-
nACC also allows asynchronous data transfer and asynchronous computation
with the CPU code to enable overlapping of data movement and computation.

#pragma acc data copyin( a[0:n], b[0:n] ), copyout( c[0:n] )
{
    #pragma acc kernels
    {
        #pragma acc loop independent
        for ( i =  0;  i < n; i++ ) {
            c[i] = a[i] + b[i];
        }
    }
}

Fig. 1: OpenACC vector addition example

Figure 1 shows a simple
OpenACC vector addition ex-
ampe. The acc data directive,
which identifies a data region,
will create a and b in device
memory and then copy the re-
spective data into device at the
beginning of the data region.
The array c will be copied out
after finishing the code segment
of the region. The acc kernels

directive means the following
block is to be executed on device. The acc loop directive causes the distri-
butions of loop iterations among the threads on the device.

3 Compiler Implementation

The creation of an OpenACC compiler requires both innovative research solu-
tions to the challenges of mapping high-level loop iterations to low-level thread-
ing architectures of the hardware, and also large amount of engineering work in
compiler development to handle parsing, transformation and code generations.
It also requires runtime support for handling data movement and scheduling
of computation on the accelerators. The compiler framework we are using is
OpenUH compiler, a branch of the open source Open64 compiler suite. Figure 2
shows the components of the OpenUH framework. The compiler is implemented
in highly component-oriented way and composed of several modules, each of
which operates on a multi-level IR called WHIRL. From top, each module trans-
lates the current level of WHIRL to its lower-level form.

We have identified the following challenges that must be addressed to create
an OpenACC implementation. First, it is very important that we create an ex-
tensible parsing and IR systems to facilitate addition of new features of future
language revisions and to support aggressive compiler transformation and opti-
mizations. Fortunately, the extensibility of OpenUH framework and WHIRL IR
allow us to easily add those extensions with decent amount of work. Secondly, we
need to design and implement an effective means for the distribution of loopnest
across thread hierarchy of GPGPUs. We discuss in more details of our solutions
in section 3.1. Thirdly, we need to create a portable runtime to support data
handling, reductions operations, and GPU kernel launching. Runtime support
will be discussed in more details in Section 4.

We decide to use the source-to-source approach, as shown in Figure 2. WHIRL2C
tool has been enhanced to output compilable C program from the CPU portion
of the original OpenACC code, and we have created a WHIRL2CUDA tool that
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Fig. 2: OpenUH compiler framework for OpenACC

will produce NVIDIA CUDA kernels after the transformation of offloading code
regions. Compared to binary code generation, the source-to-source approach
gives much more flexibilities to users. It allows to leverage advanced optimiza-
tion features in the backend compilation step by nvcc. It also gives user options
to manually optimize the generated CUDA code for further performance im-
provement.

3.1 Loop Transformation

Programmers usually offload the computation intensive loopnest to massive par-
allel accelerators. One of the major challenges of compiler transformation is to
create a uniformed loop distribution mechanism that can effectively map loop-
nest iteration across the GPU parallel system. As an example, NVidia GPG-
PUs has two level of parallelisms: block-level and thread-level. Blocks can be
organized as multi-dimensional in a grid and threads in a block can also be
multi-dimensional. How to distribute iterations of multi-level loopnest across
the multi-dimensional blocks and threads is a nontrivial problem.

OpenACC provides three level of parallelisms for mapping loop iterations to
the accelerators’ thread structures: coarse grain parallelism “gang”, fine grain
parallelism “worker” and vector parallelism “vector”. OpenACC standard gives
the flexibility of interpreting them to the compiler. For NVIDIA GPU, some
compilers map each gang to a thread block, and vector to threads in a block and
ignore worker [6]; other compilers map gang to the x-dimension of a grid block,
worker to the y-dimension of a thread block, and vector to the x-dimension of a
thread block [2]. There are also compilers that map each gang to a thread block,
worker to warp and vector to SIMT group of threads [7].

In our implementation, we evaluated 8 loopnest mapping algorithms covering
single loop, double nested loop, and triple nested loop as shown in Figures 3,
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6, 7. If the depth of the nested loop is more than 3, the OpenACC collapse

clause will be used. More specifically, gangs are mapped to blocks and vectors are
mapped to threads in each block. Both gang and vector can be multi-dimensional.
The worker clause is omitted in current OpenUH compiler. Table 1 shows the
mapping terminology we used between OpenACC and CUDA.

Table 1: OpenACC and CUDA Terminology Mapping
OpenACC clause CUDA Comment

gang
block

If there is an integer expression for this gang clause,
(integer expression) it defines the number of blocks in one dimension of grid.

vector
thread

If there is an integer expression for this vector clause,
(integer expression) it defines the number of threads in one dimension of block.

Memory coalescing is an important part that needs to take into careful con-
sideration in compiler loop transformation. Different mapping can heavily af-
fect the application’s performance. Adjacent threads (in x-dimension of a block)
taking consistent memory space can improve performance. Therefore we need to
make sure the loop iteration mapped to vector x-dimension operates the contin-
uous memory operands. The single loop and the inner loop iteration in double
nested loop are mapped to x-dimension of threads. For triple nested loop, we
selected three examples that are typically encountered in the OpenACC pro-
gram. We mapped the innermost loop of Map3 1 and Map3 2 to operate on the
continuous memory, but in Map3 3 it is mapped to the outmost loop to compute
continuous memory. The reason of this mapping for Map3 3 is because we have
a particular stencil application requiring the pattern likes this.

Single Loop. N iterations are equally distributed among gangs and vectors.
Both gang and vector are one dimension. It means the grid and thread-block are
also one dimension. Each thread takes one iteration at a time and then moves
ahead with blockDim.x ∗ gridDim.x stride. Figure 3 show the mapping and
transformation for this single loop.

#pragma acc loop gang vector
for ( i =  x1;  i < X1; i++ ) {
      ……
}

i = blockIdx.x * blockDim.x + threadIdx.x;
while ( i < X1 ) {
    if ( i >= x1 ) {
        ……
    }
    i += blockDim.x * gridDim.x;
}

(a) One loop in OpenACC (b) Mapped code in CUDA

Fig. 3: One loop transformation.

Double Nested Loop. Figure 4 shows the double nested loop iteration
distribution across gangs and vectors. The red one means current working area,
green one means the finished computation, and white means untapped. The
axises i and j represent the outer and inner loop iterations. Figure 4(a) shows
the first working area, and the next status is in Figure 4(b). After finishing
the last one in j axis, working area moves ahead into another i iteration. The
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computation is not finished until all the rectangles turn to be green. The stride
(length of the rectangle) in i and j depends on different mapping algorithms.
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Fig. 4: Double nested loop iteration dis-
tribution.

Fig. 5: Triple nested loop iteration dis-
tribution.

There are four different double nested loop cases, and the mapping algorithms
are different from each other. Figure 6 shows the mapping for each case:

– Both gangs and vector are one dimension. The outer loop is distributed
across the gang and inner loop is executed among threads in each gang. The
stride in i and j axis are gridDim.x and blockDim.x. The translated CUDA
code from this case is shown in Figure 6 Map2 1.

– One dimensional gang, two dimensional vector. After the mapping, the outer
loop stride is gridDim.x∗blockDim.y and the inner loop stride is blockDim.x.
The translated CUDA code is shown in Figure 6 Map2 2.

– Two dimensional gangs and one dimensional vectors. After the mapping,
the outer loop stride is gridDim.y and the inner loop stride is gridDim.x ∗
blockDim.x. The translated CUDA code is shown in Figure 6 Map2 3.

– Both grid and block are two dimensions. After the mapping, the outer loop
stride is gridDim.y ∗ blockDim.y and the inner loop stride is gridDim.x ∗
blockDim.x. The translated CUDA code is shown in Figure 6 Map2 4.

Triple Nested Loop. Figure 5 shows triple nested loop iteration distribu-
tion across gangs and vectors. In this figure, the red one means current working
area, blue one means the finished computation, and green means untapped. The
axises i, j, and k represent the outermost, middle and innermost loop iterations.
At the first step, GPU takes computation from axis k in Figure 5(a). When
finishing, working area moves ahead along the k axis (5(b)) until all the com-
putation in k axis is done (5(c)). After this, the computation will move to the
next j (5(d)). Repeat the first step until j reaches the boundary. Once all the
computation on the j, k space are done, i moves a stride ahead, and reset j, k
axises (5(e)). The computation repeats until all the computation is done (5(f)).

For the three different triple nested loops, Figure 7 shows the mapping:

– Both gang and vector are two dimensional. After the mapping, the out-
most loop stride in i, j, k axises are griddim.x, blockDim.y ∗ griddim.y and
blockDim.x. The translated CUDA code is shown in Figure 7 Map3 1.
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#pragma acc loop gang
for ( i = x1;  i < X1; i++ ) {
    #pragma acc loop vector
    for ( j = y1;  j < Y1; j++ ) {
      ……
    }
}

i = blockIdx.x;
while ( i < X1 ) {
    if ( i >= x1 ) {
        j = threadIdx.x;
        while ( j < Y1 ) {
            if ( j >= y1 ) {
                ……
            }    
        j += blockDim.x ;
        }
    }
    i += gridDim.x;
}

(b1) Map2_1 in CUDA

#pragma acc loop gang
for ( i = x1;  i < X1; i++ ) {
    #pragma acc loop gang vector
    for ( j = y1;  j < Y1; j++ ) {
      ……
    }
}

i = blockIdx.y;
while ( i < X1 ) {
    if ( i >= x1 ) {
        i = blockIdx.x * blockDim.x + threadIdx.x;
        while ( j < Y1 ) {
            if ( j >= y1 ) {
                ……
            }
        j += gridDim.x * blockDim.x ;
        }
    }
    i += gridDim.y;
}

#pragma acc loop gang vector
for ( i = x1;  i < X1; i++ ) {
    #pragma acc loop vector
    for ( j = y1;  j < Y1; j++ ) {
      ……
    }
}

i = blockIdx.x * blockDim.y + threadIdx.y;
while ( i < X1 ) {
    if ( i >= x1 ) {
        j = threadIdx.x;
        while ( j < Y1 ) {
            if ( j >= y1 ) {
                ……
            }
        j += blockDim.x ;
        }
    }
    i += gridDim.x * blockDim.y;
}

#pragma acc loop gang vector
for ( i = x1;  i < X1; i++ ) {
    #pragma acc loop gang vector
    for ( j = y1;  j < Y1; j++ ) {
      ……
    }
}

i = blockIdx.y * blockDim.y + threadIdx.y;
while ( i < X1 ) {
    if ( i >= x1 ) {
        j = blockIdx.x * blockDim.x + threadIdx.x;
        while ( j < Y1 ) {
            if ( j >= y1 ) {
                ……
            }
        j += gridDim.x * blockDim.x  ;
        }
    }
    i += gridDim.y * blockDim.y;
}

(a1) Map2_1 in OpenACC (a2) Map2_2 in OpenACC

(b2) Map2_2 in CUDA

(a3) Map2_3 in OpenACC (a4) Map2_4 in OpenACC

(b3) Map2_3 in CUDA (b4) Map2_4 in CUDA

Fig. 6: Translated CUDA code from double nested loop mappings

– Two dimensional gang and three dimensional vector. After the mapping, the
outmost loop stride in i, j, k axises are blockDim.z, blockDim.y ∗griddim.y
and blockDim.x∗griddim.x. The translated CUDA code is shown as Map3 2.

– Both gang and vector are two dimensional. After the mapping, the outmost
loop stride in i, j, k axises are blockDim.x, blockDim.y ∗ griddim.y and
gridDim.x ∗ griddim.x. The translated CUDA code is shown as Map3 3.

4 Runtime Support

The OpenACC annotated source code is parsed by the compiler to extract the
device kernels and translate the OpenACC directives into runtime calls. Then
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#pragma acc loop gang
for ( i = x1;  i < X1; i++ ) {
    #pragma acc loop gang vector
    for ( j = y1;  j < Y1; j++ ) {
        #pragma acc loop vector
        for ( k =z1; k < Z1; k++ ) {
            ……
        }
    }
}

i = blockIdx.x;
while ( i < X1 ) {
    if ( i >= x1 ) {
        j = blockIdx.y * blockDim.y + 
threadIdx.y;
        while ( j < Y1 ) {
            if ( j >= y1 ) {
                k = threadIdx.x;
                while ( k < Z1 ) {
                    if (k >= z1 ) {
                        ……
                    }
                k += blockDim.x;
            }
        }
        j += gridDim.y * blockDim.y;
        }
    }
    i += gridDim.x;
}

#pragma acc loop vector
for ( i = x1;  i < X1; i++ ) {
    #pragma acc loop gang vector
    for ( j = y1;  j < Y1; j++ ) {
        #pragma acc loop gang vector
        for ( k =z1; k < Z1; k++ ) {
            ……
        }
    }
}

i = threadIdx.z;
while ( i < X1 ) {
    if ( i >= x1 ) {
        j = blockIdx.y * blockDim.y + 
threadIdx.y;
        while ( j < Y1 ) {
            if ( j >= y1 ) {
                k = blockIdx.x * 
blockDim.x + threadIdx.x;
                while ( k < Z1 ) {
                    if ( k >= z1 ) {
                        ……
                    }
                k += gridDim.x * 
blockDim.x ;
            }
        }
        j += gridDim.y * blockDim.y;
        }
    }
    i += blockDim.z;
}

#pragma acc loop vector
for ( i = x1;  i < X1; i++ ) {
    #pragma acc loop gang vector
    for ( j = y1;  j < Y1; j++ ) {
        #pragma acc loop gang
        for ( k =z1; k < Z1; k++ ) {
            ……
        }
    }
}

i = threadIdx.x;
while ( i < X1 ) {
    if ( i >= x1 ) {
        j = blockIdx.y * blockDim.y + 
threadIdx.y;
        while ( j < Y1 ) {
            if ( j >= y1 ) {
                k = blockIdx.x;
                while ( k < Z1 ) {
                    if ( k >= z1 ) {
                        ……
                    }
                k += gridDim.x;
             }
        }
        j += gridDim.y * blockDim.y;
        }
    }
    i += blockDim.x;
}

(a1) Map3_1 in OpenACC  

(b1) Map3_1 in CUDA  (b2) Map3_2 in CUDA  (b3) Map3_3 in CUDA  

(a2) Map3_2 in OpenACC  (a3) Map3_3 in OpenACC  

Fig. 7: Translated CUDA code from triple nested loop mappings

two parts of the code are generated: one part is the host code compiled by
the host compiler, another part is the kernel code compiled by the accelerator
compiler. The runtime is responsible for handling data movement and managing
the execution of kernels from the host side.

4.1 Runtime Library Components

The runtime library consists of three modules: context module, memory man-
ager, and kernel loader. The context module is in charge of creating and manag-
ing the virtual execution environment. This execution environment is maintained
along the liftime of all OpenACC directives. All context and device related run-
times, such as acc init() and acc shutdown(), are managed by this module.

The memory manager helps to control the data movement between the host
and device. The compiler will translate the clauses in data and update directives
into corresponding runtime calls in this module. OpenACC provides a present

clause that indicates the corresponding data list are already on the device, in or-
der to avoid unnecessary data movement. To implement this feature, the runtime
creates a global hash map that stores all the device data information. Whenever
a compiler parses a present clause, it will translate this clause to the runtime
call to check if the data list in the present clause are in the map. If the data
exists in the map, then there is no need for data movement. If the data does not
exist in the map, the compiler will issue a compilation error. Each data structure
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in the map includes the host address, device address and the data size so that we
can find the device address given a host address or vice versa. Note that the data
allocated from acc malloc() and the data in the deviceptr clause do not have
a corresponding host address since they are only allowed to use on the device.

The purpose of kernel loader module is to launch the specified kernel from the
host. After the kernel file is compiled by the accelerator compiler, the runtime
loads the generated file, setups the threads topology and pushes the correspond-
ing arguments list into the kernel parameter stack space, then launch the speci-
fied kernel. Since different kernels have different number of parameters, a vector
data structure is created to store the kernel arguments to guarantee that the
kernel argument size is dynamic. Another work to do before launching a kernel
is to specify the threads topology. The compiler parses the loop mapping strat-
egy and then generates the corresponding thread topology. The recommended
threads value in the topology is described in section 4.2.

4.2 Gang and Vector Topology Setting

The threads topology is an important factor affecting application performance.
Since we map gangs to blocks in grid and vector into threads within each block,
the values of blocks and threads need to be chosen carefully. Too many blocks
and threads may generate potential scheduling overhead, and too few threads
and blocks cannot take advantage of the whole GPU hardware resources such
as cache and registers. The threads topology setting should consider exposing
enough parallelism in each multiprocessor and balancing the workload across
all multiprocessors. Different threads topology affects the performance differ-
ently. Some results with different topology values are discussed in section 5. In
OpenUH, if the user did not specify the gang and vector number, the default
value will be used. The default vector size is 128 because the Kepler architec-
ture has quad warp scheduler that allows to issue and execute four warps (32
threads) simultaneously. The default gang number is 16 since Kepler allows up
to 16 thread blocks per multiprocessor.

4.3 Execution Flow in Runtime

Figure 8 gives a big picture of the execution flow at runtime. In the beginning,
acc init() is called to setup the execution context. This routine can be either
called explicitly by the user or implicitly generated by the compiler. Next the
data clauses will be processed. There are different kinds of data clauses (e.g.
copyin, copyout and copy) and these data clauses may be in either of data,
parallel or kernels directive. If the data needs to be accessed from the device,
for instance those in copyin or copy or update device clauses, then they are
transferred from the host to device. These data clauses will be scanned and
processed. The purpose of this step is to make the data ready before launching
the kernels. After the data is ready, we will setup the threads topology and push
the corresponding arguments to the kernel. So far everything is ready and we
can safely load and launch the kernel. If the kernel needs to do some reduction
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Fig. 8: Execution flow with OpenACC runtime library

operation, after this kernel is finished a separate reduction algorithm kernel will
be launched. The result data, for instance those in copyout or copy or update

host clauses, will be transferred from the device to host. Finally acc shutdown()

is called to release all the resources and destroy the context.

5 Preliminary Results

We evaluated OpenUH OpenACC compiler implementation using performance
test suite from [3], Stencil benchmark from [13] and DGEMM written by our-
selves. The double precision numerical algorithms in these examples are on either
2D or 3D grids, and therefore they are highly suitable to test different loop map-
ping strategies. The experimental machine has 16 cores Intel Xeon x86 64 CPU
with 32GB main memory, and a NVIDIA Kepler GPU card (K20). OpenUH
translates the original OpenACC program into host code and device code. The
host code is compiled by gcc 4.4.7 with -O0 and the device code is compiled by
nvcc 5.0 with ”-arch=sm 35”, and then they are linked into an executable.

5.1 Performance for Double Nested Loop Mapping

In the first stage, we compile these benchmarks with OpenUH compiler and
compare the performance difference among different loop mappings. Figure 9
shows the performance comparison in different benchmarks with different dou-
ble nested loop mappings. All of Jacobi, DGEMM and Gaussblur have double
nested parallel loops but they show different performance behavior. In Jacobi,
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Fig. 9: Double nested loop mapping.
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Fig. 10: Triple nested loop mapping.

Table 2: Threads used in each loop with double loop mappings
Benchmark Double Loop Map2 1 Map2 2 Map2 3 Map2 4

Jacobi (2048x2048)
Outer loop 2048 1024x2 2046 1023x2
Inner loop 128 128 16x128 16x128

DGEMM (8192x8192)
Outer loop 8192 4096x2 8192 4096x2
Inner loop 128 128 64x128 64x128

Gaussblur (1024x1024)
Outer loop 1024 512x2 1020 510x2
Inner loop 128 128 8x128 8x128

the data accessed from the inner loop are contiguous in memory while they are
non-contiguous when accessed from the outer loop. In all of our four double
nested loop mappings, the inner loop uses vector which means the threads ex-
ecuting the inner loop are consecutive. In both vector and gang vector cases,
the threads are consecutive and the only difference is the length of concurrent
threads. In Jacobi inner loop, consecutive threads access aligned and consecu-
tive data and therefore the memory access is coalesced. In this case the memory
access pattern and the loop mapping mechanism match perfectly. That is why
the performance using all of the four loop mappings are close. Table 2 shows
the number of threads used in each loop mapping. Because Map2 1 and Map2 2
have less threads than Map2 3 and Map2 4 in the inner loop, the execution time
is slightly longer. Map2 1 and Map2 2 have the same performance since their
threads are the same in both the outer loop and inner loop. The performance
behavior of Gaussblur is similar to Jacobi because their memory access pattern
and threads management are similar.

In DGEMM, the performance of Map2 2 and Map2 4 are better than the
other two mappings which is because they both have enough parallelism in each
block to hide memory access latency. The performance penalty in Map2 1 is due
to less parallelism in each block. Map2 3 has the worst performance as it does
not have enough parallelism in each block and has many thread blocks. Too
many blocks means more scheduling overhead as a block cannot be started until
all resources for a block is available.
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5.2 Performance for Triple Nested Loop Mapping

Table 3: Threads used in each loop with triple loop mappings
Benchmark Triple Loop Map3 1 Map3 2 Map3 3

Stencil (512x512x64)
outermost loop 510 2 128

middle loop 255x2 255x4 255x2
innermost loop 128 16x64 62

Laplacian (128x128x128)
outermost loop 63 2 128

middle loop 126x2 32x4 2
innermost loop 128 2x64 126

Wave13pt (128x128x128)
outermost loop 64 2 128

middle loop 124x2 31x4 2
innermost loop 128 2x64 124

Figure 10 shows the performance comparison in different benchmarks with
different triple nested loop mappings. In Stencil, the data is stored in memory
in x→ y → z order which means the data is firstly stored in x dimension, then
y dimension and lastly z dimension. The computation kernel, however, access
the data in z → y → x order which means the data accessed in the innermost
loop (z dimension) are not contiguous in memory but the data accessed in the
outermost loop (x dimension) are contiguous in memory. The loop Map3 3 uses
vector in the outermost loop and therefore the global memory access are coa-
lesced. This follows the most important rule when mapping the loop: consecutive
threads access consecutive data in memory. Hence the performance with Map3 3
is much better than the other two loop mappings. Note that the loop Map3 2
also used vector in the first loop, but its performance is worse than Map3 3.
This is because the threads in this vector are in z dimension and not consecu-
tive in CUDA context. The loop Map3 1 uses gang in the first loop and this also
indicates that the threads are not consecutive in this level, as the stride between
each thread pair is gridDim.x rather than 1. Table 3 shows the threads in each
loop of different benchmarks. In Stencil note that although the total number of
threads in Map3 1 is much more than that of Map3 3, its performance is still
poorer which is just because the memory access is uncoalesced. Laplacian and
Wave13pt have similar performance patterns in which the performance with loop
Map3 1 and 3 2 are much better than loop Map3 3. The reason is that their data
layout in memory matches the data memory access pattern indicated by the loop
mapping mechanism. For instance, in Laplacian the data accessed in the innter-
most loop are consecutive in memory and the threads specified by loop Map3 1
and 3 2 are also consecutive, as a result the data accesses are coalesced in GPU
and high performance can be achieved. With loop Map3 3, however, the used
loop clause is gang and the stride between threads is larger than 1 which means
the threads are not consecutive. As a consequence, the non-consecutive threads
try to access consecutive data and therefore the data access is not coalesced, and
finally the performance is penalized. The loop Map3 1 and 3 2 are similar and
the only difference is the thread increment stride. That can be explained why
the performance using these two loop mapping mechanisms are close.
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Fig. 11: Performance comparison with different loop mappings

5.3 Performance Comparison between OpenUH and PGI OpenACC

We also compared the performance for all benchmarks with PGI commercial
compiler. PGI 13.6 was used and both -O0 and -O3 optimization flags were ex-
perimented, respectively. OpenUH only used -O0 since it has not applied any
optimization in generated GPU code. Figure 11 (a) shows the performance dif-
ference between OpenUH and PGI compiler in double nested loop mapping.
Since PGI compiler always converts Map2 1 to 2 3 and Map2 2 to 2 4, we only
compare the performance between 2 3 and 2 4 loop mappings. We measured
the kernel time which indicates the efficiency of the kernel code generated by
compiler, and the total time which includes the kernel time, data transfer time
and the runtime overhead. The result shows that OpenUH is slightly better than
PGI compiler in the total time of Jacobi, DGEMM and Gaussblur. By profiling
all benchmarks, we found that the performance difference is due to PGI compiler
always creates two contexts to manage asynchronous data transfer even though
the async clause was not specified in the program. As a result, the runtime has
more overhead of creating another context and managing the synchronization of
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all asynchronous activities. For the kernel time, OpenUH is still slightly better
than PGI in Jacobi and DGEMM, but slightly worse in Gaussblur. Overall the
performance in PGI compiler with -O0 and -O3 has no much difference, and the
performance variance between OpenUH and PGI is within a very small range
and OpenUH performance is very competitive comparing to PGI compiler.

Figure 11 (b) shows the performance comparison between OpenUH and PGI
compiler in triple nested loop mappings. It is observed that in Stencil the perfor-
mance of OpenUH is much worse than PGI compiler in loop Map3 2. We believe
that PGI did some memory access pattern analysis and can automatically ad-
just its loop mapping mechanism, thus delivering better performance than ours.
Briefly speaking, in the outermost loop of Stencil, the data access is not coalesced
in OpenUH implementation as OpenUH assumes the data accessed only from
the innermost loop are contiguous in memory, whereas in this program the data
accessed only from the outermost loop are contiguous in memory. We believe
PGI compiler did data flow analysis which can automatically detect this and
change the loop mapping, so that the access to the outermost loop are coalesced
by threads. So far OpenUH has implemented the same loop mapping techniques,
but it requires a memory access analysis model to dynamically change the loop
mapping, which is one of our ongoing work.

6 Related Work

There are both commercial OpenACC compiler and academic compiler efforts to
support high-level programming models for GPGPUs. CAPS compiler [1] also
uses the same source-to-source translation approach as ours. PGI OpenACC
accelerator compiler [4] use binary code generation approach. Cray compiler [7]
is another OpenACC compiler that can only be used in Cray supercomputers.
These three compilers have different mapping mechanisms as we discussed in
early section. Since both CAPS and Cray have different interpretations of gang,
worker and vector, we did not compare our results with these compilers for
fairness reason. accULL [12] is another OpenACC compiler written in python
script. KernelGen [11] can port the existing code into Nvidia GPU without the
need of adding any directives. It quires the GPU to support dynamic parallelism,
so it is not as portable as OpenACC. OpenMPC [9] translates OpenMP code
to cuda and HiCUDA [8] is another directive-based model which is simlar to
OpenACC but the user still needs to manage almost everything.

7 Conclusion

In this paper, we presented our effort of creating an OpenACC compiler in
our OpenUH compiler framework. We have designed loop mapping mechamisms
of single, double nested, and triple nested loops that are used in the compiler
transformation. These mechanisms will be helpful for users to adopt suitable
computation distribution techniques according to their application’s character-
istics. Our open-source OpenUH compiler can generate readable CPU code and
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CUDA code, which allows user to further tune the code performance. The exper-
iments show that our compiler can generate code with competitive performance
to commercial OpenACC compiler.

Since this is our first baseline version, advanced features such as multi-
dimensional array movement, loop collapse, parallel construct and async, etc.
are under development. All the executions currently implemented are on syn-
chronization mode. Advanced compiler analysis and transformation techniques
will also be explored to further improve the quality of generated kernel codes.
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