
Parallel I/O Framework for Data-Intensive Parallel Applications
Rengan Xu1, Mauricio Araya-Polo2, Barbara Chapman1

1University of Houston, USA; 2Repsol, USA

The motivation of this work are geophysical applications used for oil

and gas exploration. These applications process Terabyte size datasets

in HPC facilities. In general term, these applications read as inputs

and write as intermediate/final results huge amount of data, where the

underlying algorithms implement seismic imaging techniques. The

traditional sequential I/O cannot complete all I/O operations for so

large volumes of data in an acceptable time range. Even with parallel

I/O, because of the dynamic property of many of these applications,

each process does not know the data size it needs to write until its

computation is done, and it also cannot identify the position in the

file to write. In order to write correctly and efficiently,

communication and synchronization are required among all processes

to fully exploit the parallel I/O paradigm. Our approach removed the

expensive synchronization and communication overhead effectively.

The author would like to thank Repsol for allowing us to present this work.

Introduction

Methods

Results

Task Scheduling Strategy The dynamic load balancing

framework which uses Master/Worker model is applied.

•The master process is responsible to keep the workload balanced

among all processes.

•The worker whose processing is faster will get more work, while

those slow will get less work.

•It ensures good load balancing over heterogeneous nodes, especially

the computational demands for each unit work are different.

•The master keeps monitoring the status of the work queue and puts

their status into another queue. The status is saved into storage

periodically

References

Conclusions

Fig. 5 shows the bandwidth and speedup of parallel I/O experiments

with both POSIX I/O and memory-mapping, respectively.

Table 1: Elapsed time comparison between different approaches (time in

seconds), dataset size 100 GB, only writing operations no read operations

included

Our Parallel I/O Approach

• In some of the target applications, each process does not know how

much data it needs to write until the computation is finished.

• Our approach adds and I/O node that only handles I/O request

• An I/O FIFO mechanism is implemented, where all compute nodes

write data directly and in parallel.

• The synchronization among all compute nodes is eliminated and the

only communication left is between compute nodes and I/O node.

Figure 2: Parallel I/O Design in Applications. Blue line indicates the

communication between compute nodes and I/O node, and red line

indicates writing data into file

Buffered I/O The buffer size should be page-aligned (multiple of

4KB in our system) and stripe-align (multiple of parity stripe width

size 512KB). Fig. 3 shows the bandwidth of different buffer sizes.

Finally, 4MB is chosen since it has highest bandwidth.

Figure 3: Bandwidth with Different Buffer Size

Storage System Considerations Our storage system is based

on Panasas products. Although different compute nodes can write in

parallel to storage, when two processes write close to each other,

performance still may be degraded. Fig. 4 shows such an example.

Figure 4: Stripe Lock Contention Example. Process 1 and 2 try to update the

same parity simultaneously while reading corresponding old data and parity

and new data. To guarantee the correctness of new parity, parallel writing

would be serialized internally by a "stripe lock". To avoid such lock

contention, write should be stripe-aligned

Figure 5: Bandwidth and Speedup of Parallel I/O

•Our solution reduces the global synchronization and communication

overhead among all processes significantly.

• With POSIX I/O, the speedup of parallel I/O is up to 4.68 in writing

and 4.45 in reading with 16 processes.

• With memory-mapping, the speedup of parallel I/O is up to 7.23 in

writing and 6.14 in reading with 16 processes.

•Our approach is independent of any parallel file system and hardware.

Adapting it to other platforms will only require to set the proper

parameters, such as stripe unit size, parity stripe width size, and buffer

size.

•30x improvement is achieved on the overall execution time of the

application at hand, which greatly impact the projects turnaround where

these applications are deployed.

•We used version 4.0.1 of Panasas client, more optimizations will be

applied in newer client version, e.g. tuning of maximum readahead size,

increase of receive buffer size on shelf in writing and on client in

reading.

Acknowledgements

Figure 1: Dynamic Load Balancing Framework

