
Exploring Programming Multi-GPUs using OpenMP & OpenACC-based Hybrid
Model

Rengan Xu, Sunita Chandrasekaran, Barbara Chapman

Dept. of Computer Science
University of Houston

Houston, USA
Email: {uhxrg, sunita, chapman}@cs.uh.edu

Abstract—Heterogeneous computing come with tremendous
potential and is a leading candidate for scientific applications
that are becoming more and more complex. Accelerators such
as GPUs whose computing momentum is growing faster than
ever offer application performance when compute intensive
portions of an application are offloaded to them. It is quite
evident that future computing architectures are moving to-
wards hybrid systems consisting of multi-GPUs and multi-
core CPUs. A variety of high-level languages and software
tools can simplify programming these systems. Directive-based
programming models are being embraced since they not only
ease programming complex systems but also abstract low-level
details from the programmer. We already know that OpenMP
has been making programming CPUs easy and portable. Simi-
larly, a directive-based programming model for accelerators
is OpenACC that is gaining popularity since the directives
play an important role in developing portable software for
GPUs. A combination of OpenMP and OpenACC, a hybrid
model, is a plausible solution to port scientific applications to
heterogeneous architectures especially when there is more than
one GPU on a single node to port an application to. However
OpenACC meant for accelerators is yet to provide support
for multi-GPUs. But using OpenMP we could conveniently
exploit features such as for and section to distribute compute
intensive kernels to more than one GPU. We demonstrate the
effectiveness of this hybrid approach with some case studies in
this paper.

Keywords-Accelerators; GPU; OpenACC; OpenMP

I. INTRODUCTION

Heterogeneous architecture has gained great popularity

over the past several years. These heterogeneous architec-

tures usually comprises of accelerators that are attached

to the host CPUs, such accelerators could include GPUs,

DSPs and FPGA. These heterogeneous architecture can

leverage the power of these accelerators while preserving the

capabilities of CPU. Although heterogeneous architectures

help in increasing the computational power significantly,

they also pose potential challenges to programmers before

the capabilities of these new architectures could be well

exploited. CUDA[1] and OpenCL[3] offer two different in-

terfaces to program GPUs. But in order to perform effective

programming using these interfaces, the programmers need

to thoroughly understand the underlying architecture. This

affects productivity. To overcome these difficulties, a number

of high-level directive-based programming models have been

proposed that includes HMPP [2], PGI[7] and OpenACC.

These models can be used by inserting directives and run-

time calls into the existing source code, making partial or full

Fortran and C/C++ code portable on accelerators. OpenACC

Version 1.0 is available for use and Version 2.0 is being de-

fined currently. OpenACC is an emerging interface for paral-

lel programmers to easily write simple code that executes on

GPU. The standard follows the OpenMP model. OpenACC

is yet to provide support for porting scientific applications on

more than one GPU. There are large applications especially

in the fields of geophysics, weather forecast that requires

massive parallel computation demanding usage of the several

hardware resources available. Such applications could see

several orders of performance speedup if multi-GPUs are

used.

In this paper, we provide a high-level directive-based

hybrid model (OpenACC & OpenMP) solution that allows

the programmers to exploit the additional resources available

by using multi-GPUs. The main contributions of this paper

include:

• Explore the feasibility of programming multi-GPUs

using the OpenACC programming model.

• Compare the performance obtained from OpenMP &

OpenACC hybrid model with that of the a single GPU

and multi-core platform.

• Propose extensions to OpenACC to support program-

ming multiple accelerators within single node.

We categorize our experimental analysis into three types,

first port completely independent routines or kernels to

multi-GPUs, secondly divide one large workload into several

independent sub-workloads and then distribute each sub-

workload to one GPU. In these two cases, communication

between the GPUs do not happen. The third type of analysis

is similar to either the first or the second, but different

GPUs will have to communicate with each other. Based on

the results and performance achieved we will also propose

extensions to the OpenACC model so that it can support the

programming of multi-GPUs in a single node of a cluster.

The organization of this paper is as follows: Section II

2013 IEEE 27th International Symposium on Parallel & Distributed Processing Workshops and PhD Forum

978-0-7695-4979-8/13 $26.00 © 2013 IEEE

DOI 10.1109/IPDPSW.2013.263

1169

highlights related work in this area, Section III provides

an overview of OpenMP and OpenACC directive-based

programming models. In Section IV, we will discuss details

about how to use OpenMP & OpenACC-based hybrid model

to port three scientific applications to multi-GPUs within

single node that has NVIDIA’s GPU cards attached. We

conclude the results of our work in Section VI.

II. RELATED WORK

To overcome the obstacles of GPU programming, many

directive-based high-level programming models have been

proposed. hiCUDA [8] allows the user to have full control of

data transfer management including the memory allocation

and de-allocation, explicit data movement, loop scheduling

and the use of cache. CUDA-lite [18] can automatically

apply memory coalescing in global memory via annotations

to optimize memory access pattern. OpenMPC [11] gener-

ates the GPU kernels from OpenMP parallel regions, and

then applies various optimizations to optimize the memory

access pattern in global memory and data transfer in different

memory hierarchy. CAPS released its HMPP compiler which

is a source-to-source compiler that can translate directive-

associated functions or code portions into CUDA or OpenCL

kernels. PGI accelerator programming model provides a set

of directives to implicitly manage data, computation and

loop mapping. All of these directive-based models have their

unique syntax and features. OpenACC is an emerging model

that is addressing both portability and productivity of GPU

programming.

This section highlights some of the related work about

programming GPUs using OpenACC. Hernandez et al. [10]

used HMPP and PGI directives to port two programs S3D

thermodynamics kernel and HOMME/SE application on

single GPU and compared the performance achieved against

CUDA and OpenMP implementations. We extended their

work by porting S3D to multi-GPUs so that more powerful

computing resources could be used. Hart et al. [9] described

their OpenACC experiences by porting Himeno benchmark

to run on the Cray XK6 hybrid supercomputer. They not

only implemented the basic functionality of the benchmark

but also tuned the performance. Especially, the asynchronous

kernel execution and data transfer improved the performance

by 5%-10%.

To compare the performance achieved by OpenACC to

high-level models, research has been done to evaluate this

model using different scientific applications. Lee et al. [12]

evaluated the mainstream directive-based model by porting

thirteen applications from various scientific domains into

GPUs, and they also discussed in detail, the feature set

and limitations of each of the models. [19] evaluated the

programmability and productivity of two real-world appli-

cations, by using OpenACC, PGI Accelerator and OpenCL.

Although in one of the applications, the performance of the

OpenACC implementation was not comparable with that

of the already-well-in-place OpenCL implementation, the

authors discussed the promising approaches that OpenACC

could take. The performance gap could be addressed with

the addition of other adequate OpenACC directives. accULL

[17] is the first open source OpenACC compiler that has al-

ready implemented some major directives and runtime calls

of OpenACC. It used YaCF compiler framework [16] and a

standalone runtime library Frangollo that is independent of

any compiler. This implementation supports both CUDA and

OpenCL platforms. accULL is yet to achieve performance

as that of CUDA.

III. OVERVIEW OF OPENMP AND OPENACC

PROGRAMMING MODELS

OpenMP is an Application Programming Interface for

multi-core platform shared memory programming, which

consists of a set of directives, runtime library routines, and

environment variables. The user just needs to simply insert

the directives into the existing sequential code, with minor

change or no change at all. OpenMP adopts the fork-join

model. The model begins with an initial main thread, then a

team of threads will be forked when the program encounters

a parallel construct, and all other threads will join the main

thread at the end of the parallel construct. In the parallel

region, each thread has its own private variable and does

the work on its own piece of data. The communication

between different threads is performed by shared variables.

In the case of a data race condition, different threads will

update the shared variable atomically. Starting from 3.0,

OpenMP introduced task concept [5] which can effectively

express and solve the irregular parallelism problems such

as unbounded loops and recursive algorithms. To make the

task implementation efficient, the runtime needs to consider

the task creation, task scheduling, task switching and task

synchronization, etc. OpenMP 4.0 targets to add support for

accelerators [4].

OpenACC is an emerging model that is working towards

establishing a standard in directive-based accelerator pro-

gramming. It is a high-level programming model that can

be used to port existing HPC applications on different types

of accelerators without too much effort. Similar to OpenMP,

it also provides directives, runtime routines and environment

variables. OpenACC supports three level parallelism: coarse

grain parallelism ”gang” (similar to blocks in CUDA), fine

grain parallelism ”worker” (similar to groups of warps in

CUDA) and vector parallelism ”vector” (similar to a warp

in CUDA). The execution model assumes that the main

program runs on the host, while the compute-intensive

regions of the main program are offloaded to the attached

accelerator. In the memory model, usually the accelerator

and the host CPU consist of separate memory address

spaces, so the back and forth data transfer is an important

issue. To satisfy different data optimization purposes, Ope-

nACC provides different types of data transfer clauses in 1.0

1170

specification and possible runtime routines are proposed in

the 2.0 document. To fully use the CPU resource and remove

the potential data transfer bottleneck, OpenACC also allows

asynchronous data transfer and asynchronous computation

with the CPU code, until all asynchronous activities are

synchronized. Also the update directive can be used within

a data region to synchronize data between the host and the

device memory.

IV. PORTING APPLICATIONS TO MULTI-GPUS:

EXPERIMENTAL ANALYSIS

In this section, we will discuss the strategies to explore

programming multi-GPUs using the hybrid model within a

single node of a cluster. We will support our strategies using

three scientific applications. In order to evaluate the impact

of our strategy, we compare the performance achieved

by the multi-GPU implementation against the single GPU

implementation. And to evaluate the OpenMP & OpenACC

hybrid model, we further compare the performance against

pure OpenMP implementation. The OpenMP performance

is evaluated using 8 threads. The experimental platform is a

server machine that is a multi-core system consisting of two

NVIDIA C2075 GPUs. Configuration details are shown in

Table I. We use CAPS HMPP compiler’s implementation of

OpenACC standard. For all C programs, GCC 4.4.7 is used

to compile the parallelized OpenMP version; the same is also

used for the HMPP host compiler. For a Fortran program,

PGI compiler is used to compile the OpenMP code, and

we use PGI and HMPP (pgfortran as the host compiler of

HMPP) as the host compiler to compile the OpenACC code.

We use the latest versions of HMPP and PGI compilers;

3.3.0 and 12.9 respectively. CUDA 5.0 is also used for our

experiments. The HMPP compiler performs source-to-source

translation of directives inserted code into cuda code, and

then calls nvcc to compile the generated cuda code. We

consider wall-clock time as the evaluation measurement.

We will discuss both the single GPU and the multi-GPU

implementations for the S3D Thermodynamics application

kernel, matrix multiplication and 2D heat conduction.

Table I: Specification of experiment machine

Item Description
Architecture Intel Xeon x86 64
CPU Core(s) 16 (8 x 2 sockets)
CPU frequency 2.27GHz
Main memory 32GB
GPU Model Tesla C2075
GPU cores 448
GPU clock rate 1.15GHz
GPU global & constant memory 5375MB & 64K
Shared memory per block 48KB

OpenMP is fairly easy to use, since all that the program-

mer needs to do is insert OpenMP directives at appropriate

places and if necessary, make minor modifications to the

code. The general idea of an OpenMP & OpenACC hybrid

model is that we need to manually divide the problem among

Figure 1: A Multi-GPU Solution Using the Hybrid OpenMP

& OpenACC model

OpenMP threads, and then associate each thread with a

particular GPU.

Figure 1 demonstrates the idea where each GPU im-

plementation is performed using OpenACC. The best case

scenario is when the work in each GPU is independent of

the other and does not involve communication among the

GPUs. But in some cases, these GPUs have to communicate

with each other and the communication involves CPUs too.

Different GPUs transfer their data to their corresponding

host threads, these threads then communicate or exchange

their data via shared variable, and finally the threads transfer

the new data back to their associated GPUs. With the GPU

Direct technology, it is also possible to transfer the data

between different GPUs directly without going through the

host. But this depends on the runtime implementation.

A. S3D Thermodynamics Kernel

S3D [6] is a flow solver that performs direct numeri-

cal simulation of turbulent combustion. S3D solves fully

compressible Navier-Stokes, total energy, species and mass

conservation equations coupled with detailed chemistry.

Apart from the governing equations, there are additional

constitutive relations, such as the ideal gas equation of

state, models for chemical reaction rates, molecular transport

and thermodynamic properties. These relations and detailed

chemical properties have been implemented as kernels or

libraries that are suitable for GPU computing. In our work,

we chose this thermodynamics kernel in [10] for evaluation

purposes.

Figure 2 shows a portion of a single GPU implementation.

Both the kernels are surrounded by a main loop with MR
iterations. Each kernel produces its own output result, but

their results are the same as that of the previous iteration. We

perform multiple iterations to increase the workload so that

we are able to observe the performance achieved by both the

implementations; single and multi-GPU implementation. We

have considered a portion of the large S3D application that

for experimental purposes, this application has already been

well discussed in [10]. The two kernels in this application

have similar code structures and the input data is common.

So the two kernels can be executed in the same accelerator

sequentially while sharing the common input data, which

1171

will stay on the GPU during the whole execution time. On

the other hand, they can be executed on different GPUs

simultaneously since they are totally independent kernels.

!$acc data copyout(c(1:np), h(1:np)) copyin(T(1:np),...)
do m = 1, MR

call calc_mixcp(np, nslvs, T, midtemp, ... , c)
call calc_mixenth(np, nslvs, T, midtemp, ... , h)

end do
!$acc end data

Figure 2: S3D Thermodynamics Kernel in Single GPU

To use multi-GPUs, we distribute the kernels to two

OpenMP threads and associate each thread with one GPU.

Since we have only two kernels, it is not necessary to use

omp for, instead we use omp sections so that each kernel

is located in one section. Each thread needs to set the

device number using the runtime acc set device num(int
devicenum, acc device t devicetype). Note that the device

number starts from 1 in OpenACC, or the runtime behavior

would be implementation-defined if the devicenum were to

start from 0. To avoid setting the device number in each

iteration and make the two kernels work independently, we

apply loop fission to split the original loop into two loops. Fi-

nally we replicate the same common data on both the GPUs.

The code snippet in Figure 3 shows the implementation for

multi-GPUs. Although it is a multi-GPU implementation, the

implementation in each kernel is still as the same as that of

a single GPU implementation. Figure 4 shows the speedup

using single GPU and two GPUs against the execution time

measured for 8 cores using OpenMP. It is observed that in

all the cases, the speedup with two GPUs is always two

times the speedup of a single GPU, and the single GPU

speedup is more than 4x than that of an OpenMP code as

shown in the figure. So this implies that the results for single

GPU is much better than the OpenMP results. The speedup

of the multi-GPU implementation is definitely better than

a single GPU. A point to note here is that every iteration

has the same amount of workload, hence we always notice

that multi-GPU execution takes approximately half the time

taken for a single GPU.

B. Matrix Multiplication

In the previous case, we distributed different kernels of

one application to multi-GPUs. An alternate type of a case

study would be where the workload of only one kernel

is distributed to multi-GPUs, especially if the workload is

very large. We will use square matrix multiplication as an

illustration to explore this case study. We chose this appli-

cation because this kernel is extensively used in numerous

scientific applications. This kernel does not comprise of

complicated data movement activities and parallelization can

happen by distributing work to different threads and we also

noticed a high computation to data movement ratio. Matrix

call omp_set_num_threads(2)
!$omp parallel private(m)
!$omp sections
!$omp section
call acc_set_device_num(1, acc_device_not_host)
!$acc data copyout(c(1:np)) copyin(T(1:np),...)
do m = 1, MR

call calc_mixcp(np, nslvs, T, ... , c)
end do
!$acc end data
!$omp section
call acc_set_device_num(2, acc_device_not_host)
!$acc data copyout(h(1:np)) copyin(T(1:np),...)
do m = 1, MR

call calc_mixenth(np, nslvs, T, ... , h)
end do
!$acc end data
!$omp end sections
!$omp end parallel

Figure 3: S3D Thermodynamics Kernel in Multi-GPUs

��

��

��

��

���

���

���� 	��� ����� �	����

�
��

�
��
��
��
��
��
��
�

����������������

�������
� �����!

Figure 4: Performance Comparison of S3D

multiplication takes matrix A and matrix B as input, and

produces matrix C as the output. When multi-GPUs are used,

we will use the same amount of threads as the number of

GPUs on the host. Then we partition matrix A in block row-

wise which means that each thread will obtain partial rows

of matrix A. Every thread needs to read the whole matrix

B and produce the corresponding partial result of matrix C.

Some OpenMP implementations use similar approach, but

in our case we partition the matrix manually.

After partitioning the matrix, the computation of each

partitioned segment is executed on one GPU using Ope-

nACC Figure 5 shows the code snippet of the multi-

GPU implementation for matrix multiplication. Here we

assume that the number of threads could be evenly divided

by the square matrix row size. We also collapse the two

outermost loops since their iterations are tightly nested and

totally independent. We have only used 2 GPUs for this

experiment, however more than 2 GPUs could be easily

used as long as they are available in the platform and the

number of GPUs could be evenly divided by the number

of threads. Our experiments run with different workload

size, in which the matrix dimension ranges from 1000 to

150000. Figure 6 shows the performance comparison while

using one and two GPUs. For all the problem sizes, the

1172

single GPU performance is much better than the OpenMP

code. When the square matrix size is 1000, we noticed that

the speedup obtained by two GPUs was a little lesser than

that of a single GPU, possibly due to the overhead incurred

because of the host threads creation and GPU context setup.

Moreover the computation is not large enough for two GPUs.

When the problem size is more than 1000, the multi-GPU

implementation shows a significant performance increase.

In these cases, the computation is so intensive that the

aforementioned overheads are ignored.

omp_set_num_threads(threads);
#pragma omp parallel
{

int i, j, k;
int id, blocks, start, end;
id = omp_get_thread_num();
blocks = n/threads;
start = id*blocks;
end = (id+1)*blocks;

acc_set_device_num(id+1, acc_device_not_host);
#pragma acc data copyin(A[start*n:blocks*n])\

copyin(B[0:n*n])\
copyout(C[start*n:blocks*n])

{
#pragma acc kernels loop collapse(2) private(j,k)
for(i=start; i<end; i++)

for(j=0; j<n; j++)
{

float c = 0.0f;
for(k=0; k<n; k++)

c += A[i*n+k] * B[k*n+j];
C[i*n+j] = c;

}
}

}

Figure 5: A Multi-GPU Implementation of M*M

C. 2D Heat Conduction

We notice that in the previous two cases, the kernel on one

GPU is completely independent from the kernel on another

GPU. Now we will explore a case where the application has

communication occurring between different GPUs. One such

interesting application is 2D heat conduction. The formula

to represent 2D heat conduction is explained in[15] and is

��

���

���

���

���

���

���

�	�

�
�

���

����

����

���� ���� ����� �����

�

��

��

�
��
��
��

�

��
�

������������������

�������
 "�����#

Figure 6: Performance Comparison of MM

given as follows:

∂T

∂t
= α(

∂2T

∂x2
+

∂2T

∂y2
)

where T is temperature, t is time, α is the thermal diffusivity,

and x and y are points in a grid. To solve this problem, one

possible finite difference approximation is:

ΔT

Δt
= α[

Ti+1,j − 2Ti,j + Ti−1,j

Δx2
+
Ti,j+1 − 2Ti,j + Ti,j−1

Δy2
]

where ΔT is the temperature change over time Δt and i,
j are indices in a grid. In this application, there is a grid

that has boundary points and inner points. Boundary points

have an initial temperature and the temperature of the inner

points are also updated. Each inner point updates its temper-

ature by using the previous temperature of its neighboring

points and itself. The temperature updating operation for

all inner points in a grid needs to last long enough which

means many iterations is required to get the final stable

temperatures. In our program, the number of iterations is

20000, and we increase the grid size gradually from 512*512

to 4096*4096. We have prior experience working on the

single GPU implementation [20], Figure 7 shows the code

snippet for the single GPU implementation where we force

the pointer swapping operation happen only on GPU side,

by declaring the intermediate pointer temp tmp as a device

pointer. Inside the temperature updating kernel, we used

the collapse optimization to increase the independent loop

iteration space. Since the final output will be stored in temp1
after pointer swapping, we just need to transfer this data out

to host.

We will next discuss the application when it uses two

GPUs. Figure 8 shows the code in detail. In this imple-

mentation, ni and nj are X and Y dimension of the grid,

respectively. As shown in Figure 9, we partitioned the grid

into two parts along Y dimension and run each part on

one GPU. Before the computation, the initial temperature is

stored in temp1 h, and after temperature updating, the new

temperature is stored in temp2 h. Then we swap the pointer

so that in the next iteration the input of the kernel points

to the current new temperature. Because updating each

data point needs its neighboring points from the previous

iteration, two GPUs need to exchange the halo data in every

iteration. The halo data is referred to the data that needs

to be exchanged by different GPUs. So far there is no

way to exchange the data between different GPUs directly

using high-level directives or runtime library, therefore the

halo data updating would go through the CPU. Because

different GPUs use different parts of the data in the grid,

we do not have to allocate separate memory for these partial

data, instead we just need to use private pointer to point to

the different position of the shared variable temp1 h and

temp2 h. The first thread points to the start of the grid and

the second thread points to the position (nj/2− 1) ∗ ni of

1173

void step_kernel{...}
{

#pragma acc kernels \
present(temp_in[0:ni*nj], temp_out[0:ni*nj])
{

// loop over all points in domain (except boundary)
#pragma acc loop collapse(2) independent
for (j=1; j < nj-1; j++) {

for (i=1; i < ni-1; i++) {
// find indices into linear memory
// for central point and neighbours
i00 = I2D(ni, i, j);
im10 = I2D(ni, i-1, j);
ip10 = I2D(ni, i+1, j);
i0m1 = I2D(ni, i, j-1);
i0p1 = I2D(ni, i, j+1);

// evaluate derivatives
d2tdx2 = temp_in[im10]-2*temp_in[i00]+temp_in[ip10];
d2tdy2 = temp_in[i0m1]-2*temp_in[i00]+temp_in[i0p1];

// update temperatures
temp_out[i00] = temp_in[i00]+tfac*(d2tdx2 + d2tdy2);

}
}

}
}

#pragma acc data copy(temp1[0:ni*nj]) \
copyin(temp2[0:ni*nj]) \
deviceptr(temp)

{
for (istep=0; istep < nstep; istep++) {

step_kernel(ni, nj, tfac, temp1, temp2);
// swap the temp pointers
temp = temp1;
temp1 = temp2;
temp2 = temp;

}
}

Figure 7: Single GPU Implementation of 2D Heat Conduc-

tion

the grid (because it needs to include the halo region). Since

both the parts need the halo data for calculation, they will

transfer (nj/2+1)∗ni elements to the GPU. The temperature

updating kernel in the multi-GPU implementation is exactly

the same as the one in single GPU implementation.

Figure 10 shows the performance comparison of the

different implementations, i.e. single and multi-GPU imple-

mentations. When the grid size is 512*512, both OpenACC

implementations are a bit slower than OpenMP, but the

speedup increase is noticeable for larger grid size. While

comparing the performances of multi- GPUs to single GPU,

we notice that there is no difference when the problem

size is small. But the multi-GPU implementation demon-

strated significant performance increase when the grid size

is 4096*4096. This is because as the grid size increases,

the computation also increases significantly, while the halo

data exchange is still small enough. Thus the computa-

tion/communication ratio becomes larger. This is very ad-

vantageous when we use multi-GPUs to decompose the

computation. In the future, we may also try the ghost zone

optimization that could include redundant computation by

omp_set_num_threads(2);
// main iteration loop
#pragma omp parallel private(istep)
{

float *temp1, *temp2, *temp_tmp;
int tid = omp_get_thread_num();
acc_set_device_num(tid+1, acc_device_not_host);

temp1 = temp1_h + tid*(nj/2-1)*ni;
temp2 = temp2_h + tid*(nj/2-1)*ni;

#pragma acc data copyin(temp1[0:(nj/2+1)*ni]) \
copyin(temp2[0:(nj/2+1)*ni]) \
deviceptr(temp_tmp)

{
for(istep=0; istep < nstep; istep++){

step_kernel(ni, nj/2+1, tfac, temp1, temp2);
temp_tmp = temp1;
temp1 = temp2;
temp2 = temp_tmp;

if(tid == 0){
#pragma acc update host(temp1[(nj/2-1)*ni:ni])

} else{
#pragma acc update host(temp1[ni:ni])

}

/*make sure another device has already
updated the data into host*/

#pragma omp barrier
if(tid == 0){

#pragma acc update device(temp1[(nj/2)*ni:ni])
} else{

#pragma acc update device(temp1[0:ni])
}

}
/*update the final result to host*/
#pragma acc update host(temp1[tid*ni:(nj/2)*ni])

}
}

Figure 8: Multi-GPU Implementation-2D Heat Conduction

communicating a larger halo and reducing the number of

synchronization[14].

V. PROPOSED DIRECTIVE

In this section, we propose an extension to OpenACC to

support multi-GPUs based on our experimental analysis and

evaluation of the three scientific applications. The next step

would be to automate this strategy. In this section we pro-

pose the following directive-based extension to OpenACC

so that the model could provide support for multi-GPUs:

#pragma acc multi device [clause [[,] clause]...] new-line
structured-block

where clause is one of the following:

devices [(scalar-integer-expression)]
if (condition)
async [(scalar-integer-expression)]
copy (list)
copyin (list)
copyout (list)
create (list)

The devices clause is to specify the number of devices to

1174

Figure 9: A Multi-GPU Implementation Strategy for 2D

Heat Conduction. The left grid is split into two grids on

the right. Note that each grid on the right has one halo size

more than the half of the left grid. After each iteration, the

blue halo data in device 1 and green halo data in device

2 would be transferred to their associated region in host

grid, then the new data would be transferred to white halo

region in both devices. This is a halo exchange step. Before

halo is exchanged, a communication barrier between the host

threads is needed to ensure that new halo data have already

been on the host.

��

���

���

���

���

���

���

��� ���� ���� ����

��
		

�
��
�

	�
��
�	

��
�

���	��������������	����

��	����
�"������

Figure 10: Performance Comparison of 2D Heat Conduction

execute the following code block. The if clause is optional;

when there is no if clause, the compiler will generate the

code to execute the following code on the host. When an if
clause appears, the program will conditionally execute the

following code block on multi-GPUs. If the async clause

is not present, there is an implicit barrier at the end of

multi device region, and the host will wait until all kernels

have completed execution. If async clause is present, then

the following code will execute asynchronously with the host

code. The multi device construct also comes with some data

clauses to control the data transfer between CPU and GPU.

In the code block followed by the multi device construct,

there might be one loop nest or multiple loop nests. These

loops can also further use the loop directive of OpenACC

to do some loop optimization. If multiple loop nests exist

in the code block, then the compiler will do the dependence

analysis to check whether there is dependence between

these loops. If there is no dependence, the loops will be

scheduled on multi-GPUs. Different scheduling strategies

can be applied, for instance blocking scheduling and cyclic

scheduling. If there is only one loop nest inside the code

block, the compiler will split the loop iterations among the

multi-GPUs. The split scheduling is usually block distribu-

tion because consecutive data should reside on the same

GPU. The compiler front end will parse this directive and its

clauses and convert them into runtime calls. We are currently

exploring implementation of this proposed directive in our

compiler OpenUH [13].

VI. CONCLUSION AND FUTURE WORK

This papers explores the programming strategies of multi-

GPUs within one node of a cluster using the hybrid model,

OpenMP & OpenACC. We demonstrate the effectiveness

of our approach by exploring three applications of differ-

ent characteristics. In the first application where there are

different kernels, each kernel is dispatched to one GPU.

The second application has a large workload that is de-

composed into multiple small sub-workloads, after which

each sub-workload is scheduled on one GPU. Unlike the

previous two applications that consist of totally independent

workloads on different GPUs, the third application has some

communication between different GPUs. We evaluated the

hybrid model with these three applications on multi-GPUs

and noticed orders of performance improvement. Based on

the experience gathered in this process, we have proposed

some extensions to OpenACC in order to support multi-

GPUs. As part of the future work, we will be performing

extensive research and implement the proposed solution in

an open source compiler for OpenACC to support multi-

GPUs.

ACKNOWLEDGMENT

We would like to thank CAPS to help us understand its

software infrastructure. We would also like to thank Oscar

Hernandez for his S3D code, and Graham Pullan for his

lecture notes on heat conduction that helped us understand

the application better.

REFERENCES

[1] CUDA. http://www.nvidia.com/object/cuda home new.html.

[2] HMPP Directives Reference Manual (HMPP Workbench 3.1).

[3] OpenCL Standard. http://www.khronos.org/opencl.

[4] Technical report on directives for attached
accelerators (november 2012). http://openmp.org/wp/
openmp-specifications/.

[5] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin,
F. Massaioli, X. Teruel, P. Unnikrishnan, and G. Zhang. The
Design of OpenMP Tasks. Parallel and Distributed Systems,
IEEE Transactions on, 20(3):404–418, 2009.

[6] J.H. Chen, A. Choudhary, B. De Supinski, M. DeVries,
ER Hawkes, S. Klasky, WK Liao, KL Ma, J. Mellor-
Crummey, N. Podhorszki, et al. Terascale Direct Numerical
Simulations of Turbulent Combustion Using S3D. Computa-
tional Science & Discovery, 2(1):015001, 2009.

1175

[7] The Portland Group. PGI Accelerator Programming Model
for Fortran and C (v1.3), 2010.

[8] T. Han and T.S. Abdelrahman. hiCUDA: A High-level
Directive-based Language for GPU Programming. In Pro-
ceedings of 2nd Workshop on General Purpose Processing
on Graphics Processing Units, GPGPU-2, pages 52–61, New
York, NY, USA, 2009. ACM.

[9] A. Hart, R. Ansaloni, and A. Gray. Porting and Scaling Ope-
nACC Applications on Massively-parallel, GPU-accelerated
Supercomputers. The European Physical Journal-Special
Topics, 210(1):5–16, 2012.

[10] O. Hernandez, W. Ding, B. Chapman, C. Kartsaklis,
R. Sankaran, and R. Graham. Experiences with High-level
Programming Directives for Porting Applications to GPUs.
Facing the Multicore-Challenge II, pages 96–107, 2012.

[11] S. Lee and R. Eigenmann. OpenMPC: Extended OpenMP
Programming and Tuning for GPUs. In Proc. of the 2010
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’10, pages
1–11. IEEE Computer Society, 2010.

[12] S. Lee and J.S. Vetter. Early Evaluation of Directive-
Based GPU Programming Models for Productive Exascale
Computing. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and
Analysis, page 23. IEEE Computer Society Press, 2012.

[13] C. Liao, O. Hernandez, B. Chapman, W. Chen, and
W. Zheng. OpenUH: An Optimizing, Portable OpenMP
Compiler. Concurrency and Computation: Practice and
Experience, 19(18):2317–2332, 2007.

[14] J. Meng and K. Skadron. Performance Modeling and Auto-
matic Ghost Zone Optimization for Iterative Stencil Loops on
GPUs. In Proceedings of the 23rd international conference
on Supercomputing, pages 256–265. ACM, 2009.

[15] G. Pullan. Cambridge cuda course 25-27 may 2009. http:
//www.many-core.group.cam.ac.uk/archive/CUDAcourse09/.

[16] R. Reyes and F. de Sande. Optimization Strategies in Dif-
ferent CUDA Architectures Using llCoMP. Microprocessors
and Microsystems, 36(2):78–87, 2012.

[17] R. Reyes, I. López-Rodrı́guez, J. Fumero, and F. de Sande.
accULL: An OpenACC Implementation with CUDA and
OpenCL Support. Euro-Par 2012 Parallel Processing, pages
871–882, 2012.

[18] S.Z. Ueng, M. Lathara, S. Baghsorkhi, and W. Hwu. CUDA-
lite: Reducing GPU Programming Complexity. Languages
and Compilers for Parallel Computing, pages 1–15, 2008.

[19] S. Wienke, P. Springer, C. Terboven, and D. an Mey.
OpenACC-First Experiences with Real-World Applications.
Euro-Par 2012 Parallel Processing, pages 859–870, 2012.

[20] R. Xu, S. Chandrasekaran, and B. Chapman. Directive-
based Programming Models for Scientific Applications - A
Comprison. under publication, 2012.

1176

