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Abstract—Accelerators have been considered a viable way by
many scientific and technical programmers to program and ac-
celerate huge scientific applications. Accelerators such as GPUs
have immense potential in terms of high compute capacity but
programming these devices is a challenge. CUDA, OpenCL
and other vendor-specific models are definitely a way to go, but
these are low-level models that demand excellent programming
skills; moreover, they are time consuming to write and debug.
In order to simplify GPU programming several directive-
based programming models have already been proposed. In
this paper, we evaluate and compare several directive-based
models such as PGI, HMPP and OpenACC models involving
four scientific applications. From our experimental analysis, we
conclude that efficient implementations of high-level directive-
based models plus user guided optimizations can actually reach
the performance obtained via a hand written CUDA code.
For example a computer tomography-based algorithm ported
to GPUs using a directive-based approach showed that the
performance achieved is about 90% to that of CUDA version
of the code.

Keywords-Accelerator (GPUs); Directive-based Program-
ming Models, Optimization Strategies

I. INTRODUCTION

Computer architecture relying on heterogeneous systems
has gained significant importance over the last decade. Ac-
celerators attached to the host (CPU) could vary from GPUs,
DSPs and FPGAs. Such new heterogeneous architecture can
leverage the power of these accelerators while preserving the
capabilities of CPU. While heterogeneous architectures help
in increasing the computational power significantly, they
also pose potential challenges for programmers before the
capabilities of these new architectures could be exploited.
The CUDA programming model [1] of NVIDIA and Brook+
(implementation of Brook [7]) of AMD release the power
of GPUs from graphical domain, making it also applicable
in general purpose computing. Both CUDA and Brook+,
however, are low-level programming models that non-expert
programmers find difficult to use. The programmer needs
to thoroughly understand the underlying architecture and
specify every detail that is required by the programming
model. A number of high-level directive-based program-
ming models have emerged recently from both vendors
and academia. Recently, several directive-based models for
GPUs have been proposed, they are HMPP[2], PGI[12],
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hiCUDA[13], and a fairly newer model OpenACC[3]. HMP-
P/PGI is to CUDA[1] what OpenMP[5] is to pthreads[22].
OpenACC is working towards establishing a programming
standard for parallel computing developed by Cray, CAPS,
NVIDIA and PGI. These directive-based models offer a
high-level of abstraction such that the programmer does not
need to be aware of low-level details of the architectures.
Although these directive-based programming models may
ease programmability, it is still a challenge to achieve the
speedup that a hand-written CUDA code could achieve.

The main motivation behind our research is to study the
feasibility and applicability of these directive-based models
when they are applied to scientific applications consisting
of varied characteristics. These models allow programming
without the need to explicitly manage the data transfer
between CPU and the GPU, device start-up and shut-
down to name a few. We will explore three directive-based
programming models, HMPP, PGI and OpenACC and assess
the models using different scientific applications. We will
compare and contrast the performance achieved by these
directives to that of the corresponding hand-written CUDA
version of the applications. Using the novel OpenACC
model, the programmer does not write several versions of
the code for GPUs, unlike for HMPP and PGI models which
makes OpenACC highly attractive. However as OpenACC
has been just recently proposed, its benefits has not been
systematically evaluated yet. This paper is one of the first
to evaluate the OpenACC model.

The main contributions of this paper include:

o Assess and evaluate three directive-based programming
models, HMPP, PGI and OpenACC with respect to their
run-time performance, program complexity, and ease of
use.

Compare the performance obtained of the three pro-
gramming models with that of the native CUDA and
the sequential version.

The OpenACC model is very attractive as it standard-
izes programming. To the best of our knowledge, this is
one of the very few papers that systematically evaluates
the models. This paper is one of the first to compare
OpenACC with other programming models.
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The organization of this paper is as follows: Section II
highlights some of the related work in this area, Section III
provides comparative analysis of the three chosen high-level
directive-based programming models. In Section IV, we will
discuss details about how we have used these models to port
four scientific applications to a heterogeneous platform that
has NVIDIA’s GPU cards attached. Section V concludes our
paper.

We have explored two vendor compilers supporting the
OpenACC model. To maintain confidentiality we will be
referring to the 2 vendor compilers in this paper as Ope-
nACC_Compiler_A and OpenACC_Compiler_B.

II. RELATED WORK

Currently CUDA and OpenCL [4] are two major low-
level GPU programming models available. CUDA can only
be applied to NVIDIA GPUs, while OpenCL tries to solve
the portability issue and thus it supports different accelerator
architectures from different vendors. hiCUDA [13] is a high-
level directive-based language that was designed to ease
the GPU programming. hiCUDA provides a computation
model and a data model. The computation model allows
the programmer to specify a code region to be executed on
GPU and to specify how the parallelism map to NVIDIA
GPU architecture. The data model allows programmers to
control when to allocate and free GPU memory and the
data movement between CPU and GPU. It is also able
to achieve all CUDA optimizations such as the use of
constant and shared memory. In hiCUDA, every directive is
similar to a corresponding CUDA runtime library function,
moreover the programmer is expected to manage all data
transfer, including the memory allocation and de-allocation,
explicit data movement, loop scheduling and the use of
cache. CUDA-lite [25] can automatically apply memory
coalescing in global memory via annotations to optimize
memory access pattern. This model is still not high-level
enough since the programmer still needs to write the separate
CUDA kernel functions. Another GPGPU compiler Guru
[17] is also designed to convert the directive annotated C
code into the code that contains appropriate OpenGL[20] and
Cg APIs[19]. This language only supports one directive and
two clauses to parallelize loops, and comes with too many
restrictions. For example, only two dimensional array is sup-
ported and no pointer is allowed inside a parallelized loop.
Mint [26] can translate traditional C source to optimized
CUDA C using a small set of directives. The difference
between this model and other models is that Mint focuses
on stencil methods, so most of its optimizations are stencil
based.

OpenMP-to-CUDA framework [16] is a research-based
direction to extend OpenMP for GPUs, this framework
can translate an OpenMP application into CUDA code
automatically. It generates the GPU kernels from OpenMP
parallel regions, and then applies various optimizations to
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optimize the memory access pattern in global memory and
data transfer in different memory hierarchy. This framework
is extended to OpenMPC [15] with a new set of directives
and environment variables. Ohshima et al. [23] discusses
another framework called OMPCUDA. Here, the original
code is divided into CPU portions and GPU portions, Omni
compiler is used, GPU portions are further written to inde-
pendent functions and thread launch functions. All shared
variables are transferred to GPU but the dynamic variables
(array and struct) and pointers seemed to be complex to
implement. Simple block distribution is used for ’for loop’
to distribute a block of iterations to each thread in the GPU.
So far it has no data transfer optimization strategy and can
only translate simple programs.

The case studies that we have considered for our ex-
perimental analysis are Feldkamp-Davis-Kress (FDK) al-
gorithm [11], Heat conduction application and a Cluster-
ing algorithm. Let us discuss some of these case studies
that have been ported to GPUs using CUDA and other
approaches. Nesterets et al. [21] parallelized the most time
consuming step back-projection operation in FDK algorithm
with CUDA and achieved up to two orders of magnitude
speedup in the back-projection itself and more than an order
of magnitude speedup in the whole CT application. We
extended this work by exploring directive-based accelera-
tor programming models HMPP, PGI and OpenACC and
compared their performance with the hand written CUDA
code.

Ayar et al. [6] applied OpenMP and MPI programming
models to solve 2D heat equation and CUDA model to
solve 3D heat equation, and visualized the results obtained
from heat equation for various data. Chen et al. [9] paral-
lelized CLEVER clustering algorithm with both OpenMP
and CUDA, and achieved linear scalability in multi-core
system. We have used both 2D heat equation and CLEVER
algorithm in our study and parallelized them using different
directive-based accelerator models.

III. OVERVIEW OF DIRECTIVE-BASED PROGRAMMING
MODELS

In this section we provide details about the three directive-
based models that are being evaluated in this paper. HMPP is
a directive-based programming model used to build parallel
applications running on manycore systems. It is a source-
to-source compiler that can translate directive-associated
functions or code portions into CUDA or OpenCL kernels.
In HMPP, the two most important concepts are “codelet” and
“callsite” [2]. The “codelet” concept represents the function
that will be offloaded to the accelerator, and “callsite” is
the place to call the “codelet”. 1t is the programmer’s re-
sponsibility to annotate the code by identifying the codelets
and inform the compiler about the codelets and where to
call the same. In the steps of compilation, the annotated
code is parsed by the HMPP preprocessor to extract the



codelets and to translate the directives into runtime calls.
The preprocessed code is then compiled and linked to HMPP
runtime with a general-purpose host compiler. If the accel-
erator is not found or not available, the program execution
can fall back to the original sequential version. HMPP also
supports the “region” directive which only offloads part of
a function into accelerator and the “region” is a merge of
codelet/callsite directives. The main issue with programming
accelerators is the data transfer between the accelerator and
the host. HMPP offers many data transfer policies as part of
the optimization strategies. The user can manually control
the data transfer, i.e. transfer the data every time the codelet
is called or transfer the data only during the first time when
the codelet is called. It can also be decided by the compiler
automatically.

HMPP also provides a set of directives to improve the per-
formance by enhancing the code generation. In the codelet,
the user can put the read only data into constant memory,
preload the frequently used data into shared memory, or
explicitly specify the grid size in NVIDIA architecture. If the
loop is so complex that the compiler is not able to parse, the
user can give some hints to the compiler that all iterations in
the loop are independent. HMPP also support multi-GPUs
programming by using “parallel” directive.

PGI accelerator programming model contains a set of
directives, runtime library routines and environment vari-
ables [12]. The directives include data directives, com-
pute directives and loop directives. The compute directive
specifies a portion of the program to be offloaded to the
accelerator. There is an implicit data region surrounding
the compute region, which means data will be transferred
from the host to the accelerator before the compute region
and be transferred back from the accelerator to the host
at the exit of compute region. Data directives allow the
programmer to manually control, i.e. where to transfer the
data other than the boundaries of compute region. The loop
directives enable the programmer to control how to map loop
parallelism in a fine-grained manner. The user can add these
directives incrementally so that the original code structure
is preserved. The compiler maps loop parallelism onto the
hardware parallelism using the planner [28]. PGI optimizes
the data transfer by “data region” directive and its clauses
and be able to remove unnecessary data copies. Using the
loop scheduling directive, the user can add the data in the
highest level of the data cache by using “cache” clause and
this helps in improving the data access speed.

OpenACC [3] is an emerging GPU-based programming
model that is working towards establishing a standard in
directive-based accelerator programming. The OpenACC
model is based on the PGI model, hence the former inherits
most of the concepts from the latter. However some of
the differences are: Unlike PGI’s single “region” compute
directive, OpenACC offers two types of compute directives
“parallel” and “kernels”. The directive “kernels” is similar
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to PGI’s “region” that surrounds the loops to execute on the
accelerator device. With the “parallel” directive, however,
if there is any loop inside the following code block and
the user does not specify any loop scheduling technique, all
the threads will execute the full loop. OpenACC supports
three levels parallelism: gang, worker and vector, while PGI
only defines two levels of parallelism: parallel and vector.
Both OpenACC and PGI models allow the compute region
to use the “async” clause to execute asynchronously with
the host computation and the user can synchronize these
asynchronous activities with the “waif” directive. They also
have a similar set of runtime library routines, including
getting the total number of accelerators available, getting &
setting the device type and number, checking & synchroniz-
ing the asynchronous activities and starting up & shutting
down the accelerator. Unlike PGI, OpenACC can allocate
and free a part of accelerator memory using acc_malloc()and
acc_free() functions.

The NVIDIA GPU architecture consists of several stream-
ing multiprocessors (SMs). Each SM contains multiple
scalar processors (SPs, also referred to as cores), control
units, and memory which is shared among all SPs. An SP
contains integer, floating point, logic, branching, and move
and compare units. Each thread is executed by an SP. The
code is executed in a group of threads which is called a warp.
All threads in a warp execute the same instruction at the
same time. The threads mapped to an SM is called a thread
block. A possible mapping from OpenACC execution model
to NVIDIA GPU hardware is as follows: gangs map to
thread blocks, workers map to warps inside each block, and
vector maps to all threads inside a warp. When a “kernels”
directive appears, blocks of threads will be created and the
whole workload will be distributed to these threads. Several
gangs may execute on a single SM if the user specified gang
number is greater than the available SMs in the hardware.
A single gang does not span SMs and will stay in only one
SM until finished. If any conditional branching occurs inside
a warp, the warp serially executes each branch path where
some threads are disabled for conditional operations.

IV. PORTING APPLICATIONS ON GPUs: EXPERIMENTAL
ANALYSIS

In this section, we evaluate three directive-based pro-
gramming models using four scientific applications. The
experimental platform is a server machine that is a multicore
system consisting of two NVIDIA C2075 GPUs. Config-
uration details are shown in Table I. We use the most
recent versions for all the compilers being discussed in this
paper. We use GCC 4.4.7 for all the sequential versions of
the programs as well as for the HMPP host compiler. We
use -O3 as the compilation flag for optimization purposes.
As part of the evaluation process, we highlight several
features of the programming models, that is best suited
for the characteristics of an application. We compare the



performances achieved by each of the models with that of
the sequential and CUDA versions of the code. We consider
wall-clock time as the evaluation measurement.

Table I: Specification of experiment machine

Item Description

Architecture Intel Xeon x86_64

CPU socket 2

Core(s) per socket 8

CPU frequency 2.27GHz

L1, L2 and L3 cache 32KB, 256KB and 8192KB
Main memory 32GB

GPU Model Tesla C2075
GPU cores 448

GPU clock rate 1.15GHz

GPU global & constant memory | 5375MB & 64K
Shared memory per block 48KB

A. 2D Heat Conduction

The formula to represent 2D heat conduction is explained
in[24] and is given as follows:

oT B (82T L 82T)
at -~ N o2 Oy?
where T is temperature, ¢ is time, « is the thermal diffusivity,

and x and y are points in a grid. To solve this problem, one
possible finite difference approximation is:

AT a[Ti+1,j 2T+ T +Ti,j+1 —2T; + Ti,j—l]
At Az? Ay?

where AT is the temperature change over time At and i, j
are indices in a grid. At the beginning, there is a grid that has
boundary points with initial temperature and the inner points
that need to update their temperature. Then each inner point
updates its temperature by using the previous temperature of
its neighboring points and itself. The temperature updating
operation for all inner points in a grid needs to last long
enough which means many iterations is required to get the
final stable temperatures. In our program, the number of
iterations is 20000, and we increase the grid size gradually
from 128*128 to 4096*4096. Figure 1 contains the code for
temperature updating kernel and and steps to call this kernel
in the main program.

It is possible to parallelize the 2D heat conduction us-
ing the most basic directives from OpenACC, HMPP and
PGI. For example, we use the OpenACC model and insert
“#pragma acc kernels loop independent” before the nested
loop inside the temperature updating kernel. The main point
to note with this algorithm is performance. By profiling the
basic implementation, we found that the data is transferred
back and forth in every main iteration step. The cost of data
transfer is so expensive that the parallelized code is even
slower than the original native version. The challenging task
is executing the pointer swapping operation. In iteration i,
templ is the input and temp?2 stores the output data. Before
proceeding to iteration 7+ 1, these two pointers are swapped
so that templ holds the output data in iteration i while
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temp2 will wait to store the output data in iteration ¢ + 1.
An intermediate pointer femp is needed to swap these two
pointers. Since temp resides on the host while templ and
temp?2 reside on the accelerator, they cannot be swapped
directly. The key is how to swap these pointers inside the
accelerator internally so that unnecessary data transfer is
removed.

While using the OpenACC model, we use the deviceptr
data clause to specify temp as a device pointer, i.e, the
pointer will always remain on the accelerator side. To avoid
transferring the data during each step, data directive needs
to be added so that the data is transferred only before and
after the main loops. After all the iterations are completed
we need to transfer data in fempl instead of temp2 from
GPU to CPU since the pointers of templ and temp2 have
been swapped earlier. Inside the temperature updating ker-
nel, the nested loop is collapsed because every iteration is
independent. Using HMPP, we have considered copying the
input and output data just once by setting the data transfer
policy of temp_in and temp_out to manual. To ensure that
the correct data is being accessed, we used HMPP’s data
mirroring directive so that we refer to arguments fempl and
temp2 with their host addresses. Data mirroring requires
data mirrors to be declared and allocated before being used.
HMPP could collapse the nested loop in the kernel by using
”gridify(j,i)” code generation directive. Figure 1 and Figure
2 show the code snippet using both HMPP and OpenACC
model.

Note that this application is sensitive to floating point
operations. We found that the precision of the floating point
values of the final output temperature on the GPU is different
to the values on the CPU. This is due to Fused Multiply-Add
(FMA) [27], here the computation rn(X * Y + Z) occurs in
a single step and rounded once. Without FMA, rn(rn(X * Y)
+ Z) is composed of two steps and rounded twice. So their
results would be slightly different. In 2D heat conduction,
this kind of numerical difference will propagate with more
iterations. To disable FMA, we used the options “—nvcc-
options -fmad=false” in HMPP and ”-ta=nofma” in PGI.
When we used these compilation flags, the results of both
HMPP and PGI appeared to be exactly the same as that of
the CPU. Figure 3 shows performance results when different
programming models are applied on the application.

Let us consider the baseline (sequential) speedup to be
1 as shown in the Figure 3. We see that for almost all
the grid sizes, HMPP and PGI models perform as close
as 80% to that of the CUDA version. The CUDA code
has been considered from [24]. OpenACC_Compiler_A and
OpenACC_Compiler_B perform approximately 80% and
70% respectively to that of the CUDA version. For the
smallest grid size 256%256 considered, we see that neither
the directive-based approaches nor the CUDA version was
able to perform better than the sequential version. This
is due to the fact that GPU is only suitable for massive



#pragma
#pragma
#pragma

heat codelet, target=CUDA &

& , args[temp_in].io=in &

& , args[temp_out].io=inout &
#pragma hmpp & , args[temp_in,temp_out].mirror &
#pragma hmpp & , args[temp_in, temp_out].transfer=manual
void step_kernel (int ni, int nj, float tfac,
float *temp_in, float xtemp_out)

hmpp
hmpp
hmpp

{

// loop over all points in domain
#pragma hmppcg gridify(j, i)
for (j=1; J < nj-1; J++) {
for (i=1; i < ni-1; i++) {
// find indices into linear memory
// for central point and neighbours

(except boundary)

i00 = I2D(ni, i, 3J);

iml0 = I2D(ni, 1i-1, 3Jj);
ipl0 = I2D(ni, i+1, J);
iOml = I2D(ni, i, j-1);
i0pl = I2D(ni, i, 3j+1);

// evaluate derivatives
d2tdx2 = temp_in[iml0]-2xtemp_in[i00]+temp_in[iplO0]
d2tdy2 temp_in[iOml]-2+temp_in[i00]+temp_in[iO0pl]

7
= ;

// update temperatures
temp_out [100] temp_in[i00]+tfacx (d2tdx2 + d2tdy2);
}

}

#pragma hmpp heat allocate, data["templ"], size={nixnj}
#pragma hmpp heat advancedload, data["templ"]

#pragma hmpp heat allocate, data["temp2"], size={nixnj}
#pragma hmpp heat advancedload, data["temp2"]

// main iteration loop

for (istep=0; istep < nstep; istep++) {

#pragma hmpp heat callsite

step_kernel (ni, nj, tfac, templ, temp2);
// swap the temp pointers
temp = templ;
templ = temp2;
temp2 = temp;
}
#pragma hmpp heat delegatedstore, data[templ]

#pragma hmpp heat release

Figure 1: HMPP Implementation of 2D Heat Conduction

computation purposes. For example, we see that for the grid
size 4096*4096, almost all of the directive-based approaches
and CUDA model seem to achieve more than 100% to that
of the sequential version.

B. FDK Algorithm

Computed Tomography (CT) has been widely used in
medical industry to produce tomographic images of specific
areas of the body. It uses reconstruction technique that
reconstructs an image of the original 3D-object from a large
series of two dimensional X-ray images. As a set of rays
pass through an object around a single axis of rotation,
the produced projection data is captured by an array of
detectors, from which a Filtered Back-Projection method
based on the Fourier Slice Theorem is typically used to
reconstruct the original object. Among various filtered back-
projection algorithms, the FDK algorithm is mathematically
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void step_kernel(...)

{
#pragma acc kernels \
present (temp_in[0:ni*nj],

{

temp_out [0:nixnj])

// loop over all points in domain (except boundary)

#pragma acc loop collapse(2) independent
for (3=1; Jj < nj-1; J++) |
for (i=1; i < ni-1; i++) {

// find indices into linear memory
// for central point and neighbours

i00 = I2D(ni, i, 3J);

iml0 = I2D(ni, i-1, 3J);
ipl0 = I2D(ni, i+1, 3j);
iOml = I2D(ni, i, 3j-1);
i0pl = I2D(ni, i, j+1);

// evaluate derivatives
d2tdx2 = temp_in[iml0]-2+temp_in[i00]+temp_in[ipl0];
d2tdy2 temp_in[i0ml]-2+temp_in[i00]+temp_in[iOpl];

// update temperatures
temp_out [100] temp_in[i00]+tfacx (d2tdx2 + d2tdy2);
}

}
}

#pragma acc data copyin(ni, nj, tfac)\
copy (templ [0:ni*njl) \
copyin(temp2[0:nixnj])
deviceptr (temp)

{

\

istep++) {
templ, temp2);

for (istep=0; istep < nstep;
step_kernel (ni, nj, tfac,
// swap the temp pointers
temp = templ;

templ temp2;

temp2 temp;

Figure 2: OpenACC Impementation of 2D Heat Conduction
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Figure 3: 2D Heat Conduction Speedup
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straightforward and easy to implement. It is important that
the acquired reconstruction effect is good, the goal of this
work is to speed up the reconstruction using directive-based
programming models.

Algorithm 1 shows the pseudo-code of the FDK algo-
rithm, this is comprised of three main steps: Weighting -
calculate the projected data; Filtering - filter the weighted
projection by multiplying their Fourier transforms; Back-
projection - back-project the filtered projection over the



3D reconstruction mesh. The reconstruction algorithm is
computationally intensive and it has biquadratic complexity
(O(N%)), where N is the number of detector pixels in one
dimension. The most time-consuming step of this algorithm
is back-projection which takes more than 95% of the whole
algorithm. So we will concentrate on parallelizing the back-
projection step.

Algorithm 1: Pseudo-code of FDK algorithm
Initialization;
foreach 2D image in detected images do

foreach pixel in image do
| Pre-weight and ramp-filter the projection;

end
foreach 2D image in detected images do

foreach voxel in 3D reconstruct volume do
Calculate projected coordinate;

Sum the contribution to the object from all

tilted fan beams;
end

end

We follow the approach from [14] for implementation
purposes. The back-projection has four loops. The three
outermost loops will loop over each dimension of the output
3D object, and the innermost loop will access each of
2D detected image slices. First the code is restructured
so that the three outermost loops are tightly nested and
then we can apply collapse clause from PGI and OpenACC
and use gridify clause from HMPP. The innermost loop is
sequentially executed by every thread. All detected images
are transferred from CPU to GPU by using the copyin
clause, and the output 3D object (actually many 2D image
slices) are copied from GPU to CPU using the copyout
clause. In HMPP, the input/output property of detected
images is set as in and output object is set as out. To
evaluate our implementations, we use the 3D Shepp-Logan
head phantom data which has 300 detected images and
the resolution of each image is 200%200. The algorithm
produces 200*200*%200 reconstructed cube. Note that this
algorithm also has the same issue as 2D heat conduction
i.e. the algorithm is sensitive to floating point operations,
so we disabled the FMA using the compilation flags. This
does not mean that the results using FMA are incorrect,
but just that we explore different implementation techngiues
while maintaining the same computation strategy, such that
the results are consistent; we will also be able to make
a fair comparison of results in this case. Figure 4 shows
the speedup for different accelerator programming models
compared to that of the sequential version. A point to note
is that the interval between the points in the Y-axis is small,
their performances are actually close to each other. The
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Figure 4: FDK Speedup with Different Models

performance of all directive-based models (HMPP, PGI and
OpenACC) are close to 90% of the CUDA code, that was
written by us from scratch.

C. CLEVER Clustering

In this section, we will parallelize a clustering algorithm
called CLEVER (CLustEring using representatiVEs and
Randomized hill climbing) [10]. CLEVER is a prototype-
based clustering algorithm that seeks for clusters maximiz-
ing a plug-in fitness function. Prototype-based clustering
algorithms construct clusters by seeking an ’optimal’ set of
representatives-one for each cluster; clusters are then created
by assigning objects in the dataset to the closet cluster repre-
sentatives. Like K-means [18], it forms clusters by assigning
the objects to a cluster with the closest representative.
CLEVER uses a randomized hill climbing to seek a good
clustering, i.e. it samples p solutions in the neighborhood of
the current solution and continues this process until no better
solutions can be found. Algorithm 2 shows the pseudo-code
of CLEVER program code. It starts with randomly selecting
k’ representatives from the dataset O where &’ is provided by
the user. CLEVER samples p solutions in the neighborhood
of the current solution and chooses the solution s with the
maximum fitness value for ¢(s) as the new current solution
provided there is an improvement in the fitness value. New
neighboring solutions of the current solution are created by
three operators: “Insert” which inserts a new representative
into current solution; “Delete” which deletes an existing
representative from current solution, and “Replace” which
replaces an existing representative with a non-representative.
Each operator is selected at a certain probability and the
representatives to be manipulated are chosen at random.
To prevent premature convergence, CLEVER will resample
p*q more solutions in the neighborhood before terminating,
where ¢ is the resampling rate. The description of CLEVER
parameters are as follows [8]:

1) k’: initial number of clusters

2) neighborhood-size: maximum numbers of operators
applied to generate a solution in the neighborhood

3) p: sampling rate, number of samples that is randomly
selected from the neighborhood



4) g: resampling rate. If the algorithm fails to improve
fitness with p and then 2 x p solutions, then sampling
size in the neighborhood would be increased by factor
q—2

5) imaz: maximum number of iterations in the algorithm

Table II: L100Ovals Dataset Characteristics

Item Description
Data size 335,900 objects
Attributes <X, Yy, class label>

Euclidean Distance

Purity:

Percentage of objects belonging
to the majority class of

the cluster

Distance Function
Plug-in Fitness Function

Algorithm 2: Pseudo-code of CLEVER algorithm
Input: Dataset O, k’, neighborhood-size, p, q,imax

Output: Clustering X, fitness g(X), rewards for clusters
in X

Current solution <— randomly selecting k’
representatives from O ;
while iterations < imax do
Create neighbors of the current solution randomly
using the given neighborhood definition, and
calculate their respective fitness;
if The best neighbor improved fitness then
| Current solution < best neighbor;
else
Neighborhood of current solution is re-sampled
by generating more neighbors;
if re-sampling leads to better solution then
Current solution <— best solution found by
re-sampling;
else
| Terminate returning the current solution;
end

end
end

We profile the CLEVER algorithm using GNU profiler
before parallelizing the same. Statistical information gath-
ered shows that the most time-consuming portion of the
algorithm is the function that assigns objects to the closest
representative which computes and compares a lot of dis-
tances. The original code is written in C++, this needed to
be converted to C so that the algorithm could be supported
by PGI, HMPP and OpenACC model. (A point to note is
that HMPP recognizes C++ code to an extent).

Since the data structure of the dataset is user-defined and
the pointer operation is quite complicated, the accelerator
region cannot be parsed by the compiler. Hence, the code
is restructured so that it is relatively easier to be parsed by
the compiler. The directives also give hints to the compiler
such that all the iterations in the loop are independent. Since
the whole dataset is read-only, it is transferred to accelerator
before the kernel is called. We can achieve this using both
PGI and OpenACC model by using copyin() clause of data
construct. We use the region directive of HMPP model and
set the data transfer policy of the dataset as atfirstcall so
that it is copied from the host to the accelerator only once.
This will enable the dataset to stay in the global memory of
accelerator even if the kernel is called many times.
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Table III: Earthquake Dataset Characteristics

Item Description
Data size 330,561 objects
Attributes <latitude, longitude, depth >

Euclidean Distance

High Variance:

Measures how far the objects in

in the cluster are spread

out with respect to earthquake depth

Distance Function
Plug-in Fitness Function

We evaluated the three directive-based models on two
datasets called L10Ovals(Large 100vals) and Earthquake.
The characteristics of these two datasets are shown in Table
Il and Table III, respectively. The L10Ovals dataset has
natural clusters representing L100vals containing 335,900
objects.

Earthquake dataset contains 330,561 earthquakes which
are characterised by latitude, longitude and depth of the
earthquake. The goal is to find clusters where the variance
of the earthquake depth is high; that is where shallow
earthquakes are co-located with deep earthquakes.

Figure 5 shows the speedup of how the four different
models react to these two datasets. OpenACC_Compiler_A
required a very long time to execute this algorithm, hence
we do not include the speedup in the graph.The reason may
be that the model is yet to provide an effective support to
deal with pointer operations.

For L100vals dataset HMPP showed a speedup of 4.63x,
which is very close to that of the CUDA version, 5.04x.
We have considered the CUDA version of the algorithm
from [8]. We noticed that among the OpenACC mod-
els, OpenACC_Compiler_B showed a speedup of 1.58x,
performing poorer to CUDA. For Earthquake dataset, the
speedup achieved by HMPP, PGI, OpenACC_Compiler_B
were 29.99x, 29.65x and 29.32x respectively, these are
almost the same as that of CUDA, which showed a speedup
of 30.33x. Although L100vals and Earthquake have almost
the same number of objects in their datasets we still see a
significant difference in performance. This is primarily due
to the characteristics of each of these datasets. L10Ovals
has well defined and separated clusters therefore converges
more quickly. The L10Ovals clustering task takes 21 iter-
ations whereas the earthquake dataset clustering takes 216
iterations. Moreover the number of clusters searched in the
earthquake clustering experiment is much higher than the
number of clusters in L100Ovals experiment making it more
time consuming to assign objects to clusters.
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Figure 5: CLEVER Speedup with Different Models

Table IV: Time(in sec) Consumed by Serial, CUDA, HMPP,
PGI and OpenACC Versions of the Code, Only for Most
Time-consuming Dataset

Applications Serial CUDA | HMPP PGI OpenACC
—
2D Heat 8922.81 59.13 60.78 72774 | 75.65 | 84.76
FDK 363.50 8.99 10.40 9.71 9.39 10.04
CLEVER 116.15 23.04 25.08 | 101.51 - 73.31

Table IV shows the execution time consumed in seconds
by the different directive-based models for three case studies.
Results for the application 2D Heat Conduction shows
that the time consumed by directive-based models were
significantly lower than the time consumed by the serial
version of the code. However the execution time for the
CUDA code still appears to be the best. We see that HMPP
model performs better than that of PGI and also that of Ope-
nACC models. It could be due to slightly better optimiza-
tion strategies offered by HMPP compiler implementations.
Among the two OpenACC models, OpenACC_Compiler_A
seems to perform better than OpenACC_Compiler_B. With
respect to FDK algorithm, we notice that almost all the
models perform similar to each other and infact close to
that of the CUDA code. CLEVER application shows that
HMPP model performs the best compared to all other
models. As mentioned earlier, we suspect that PGI compiler
cannot handle pointer operations very efficiently yet. Ope-
nACC_Compiler_A model may also have issues with the
implementation of pointer operations. Hence the execution
time seems to be long.

To summarize, directive-based models have indeed shown
promising results compared to that of the CUDA version.
In-depth research analysis of these models would lead to
better performance. An important point to note is that the
OpenACC model is still being constructed and the technical
details may require fine tuning before we could actually
make a deeper comparative analysis.

V. CONCLUSION AND FUTURE WORK

This paper evaluates some of the prominent directive-
based GPU programming models for four applications with
different characteristics. We compare each of these models

and tabulate the performances achieved by these models.
We see that the performance is highly dependent on the
application characteristics. The high-level models also pro-
vide a high-level abstraction by hiding most of the low-level
complexities of the GPU platform. This makes programming
easier leading to programmer productivity. We noticed that
all the directive-based models performed much better than
that of the serial versions of the applications being evaluated.
We also observed that these models demonstrated perfor-
mance results close enough to that of the CUDA version of
the applications. However, we had to write almost different
versions of the code before we could use a particular
programming model, especially while using HMPP and PGI.
OpenACC solved this portability issue by providing a single
standard to be used to program GPUs. As part of the future
work, we would like to perform extensive research and
propose solutions to enable OpenACC provide support for
multiple GPUs. We will be also exploring suitable solutions
to overcome the several limitations of the directive-based
models that we came across while evaluating the different
case studies.
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