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Abstract 

There has been an explosion of interest in Deep Learning and the plethora 

of choices makes designing a solution complex and time consuming. Dell 

EMC’s Ready Solutions for AI – Deep Learning with NVIDIA is a complete 

solution, designed to support all phases of Deep Learning, incorporates 

the latest CPU, GPU, memory, network, storage, and software 

technologies with impressive performance for both training and inference 

phases. The architecture of this Deep Learning solution is presented in 

this document. 
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Executive summary 

Deep Learning techniques have enabled great success in many fields such as computer vision, natural 

language processing (NLP), gaming and autonomous driving by enabling a model to learn from existing data 

and then to make corresponding predictions. The success is due to a combination of improved algorithms, 

access to large datasets and increased computational power. To be effective at enterprise scale, the 

computational intensity of Deep Learning neural network training requires highly powerful and efficient parallel 

architectures. The choice and design of the system components are carefully selected and tuned for Deep 

Learning use-cases which can impact business outcomes of applying Deep Learning techniques. In addition to 

several options for processors, accelerators and storage technologies, there are multiple Deep Learning 

software frameworks and libraries that must be considered. These software components are under active 

development, updated frequently and cumbersome to manage. It is complicated to simply build and run Deep 

Learning applications successfully, leaving little time for focus on the actual business problem. 

To resolve this complexity challenge, Dell EMC has developed an architecture for Deep Learning that provides 

a complete, validated and supported solution. This solution includes carefully selected technologies across all 

aspects of Deep Learning, processing capabilities, memory, storage and network technologies as well as the 

software ecosystem. This document presents the architecture of this Deep Learning solution including details 

on the design choice for each component.  

 

AUDIENCE 

This document is intended for organizations interested in accelerating Deep Learning with advanced computing 

and data management solutions. Solution architects, system administrators and others interested readers within 

those organizations constitute the target audience.  
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1 Solution Overview 
Dell EMC has developed an architecture for Deep Learning that provides a complete, supported solution. This 

solution includes carefully selected technologies across all aspects of Deep Learning, processing capabilities, 

memory, storage and network technologies as well as the software ecosystem. This complete solution is 

provided as Dell EMC’s Ready Solutions for AI – Deep Learning with NVIDIA. The solution includes fully 

integrated and optimized hardware, software, and services including deployment, integration and support 

making it easier for organizations to start and grow their Deep Learning practice.  

The high level overview of Dell EMC Ready Solutions for AI - Deep Learning is shown in Figure 1. 

Open Source Frameworks

TensorFlow, PyTorch, MXNet, Caffe, CNTK, Theano, ...

Compilers and Neural Network Libraries

CUDA, cuDNN, cuBLAS, NCCL, TensorRT, ...

PowerEdge R740xd PowerEdge C4140

Isilon F800

Data Science Provisioning Portal 

(based on Jupyter Notebook)

Bright Cluster Manager for Data Science

Infrastructure (compute, storage, network)

Mellanox

 

Figure 1: Overview of Dell EMC Ready Solutions for AI - Deep Learning 

Data Science Provisioning Portal: This is a new portal for data scientists created in this solution. It enables 

data scientists, who do not have expertise in cluster technologies use a simple web portal to take advantage of 

the underlying technology. The scientists can write, train and do inference for different Deep Learning models 

within Jupyter Notebook which includes Python 2, Python 3, R and other kernels. 

Bright Cluster Manager for Data Science: Bright Cluster Manager is used for the monitoring, deployment, 

management, and maintenance of the cluster. This software provides the deep learning frameworks, libraries, 

and compilers and dependency rpms for supported configuration. 

Deep Learning Frameworks and Libraries: This category includes TensorFlow, PyTorch, MXNet, Caffe, 

CUDA, cuDNN, and NCCL. The stable version of these frameworks and libraries are integrated into the solution. 

Infrastructure: The infrastructure comprises of a cluster with a master node, compute nodes, shared storage 

and network. In this instance of the solution, the master node is a Dell EMC PowerEdge R740xd, each compute 

node is PowerEdge C4140 with NVIDIA Tesla GPUs, the storage includes Network File System (NFS) and 

Isilon, and the networks include Ethernet and Mellanox InfiniBand. 
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Section 2 describes each of these solution components in more detail, covering the compute, network, storage 

and software configurations. That is followed by Section 3 that describes containerization techniques for Deep 

Learning. Section 4 has details on the Data Science Provisioning Portal developed by Dell EMC. Section 5 

gives the conclusions. 
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2 Solution Architecture 
The hardware for this solution comprises of a cluster with a master node, compute nodes, shared storage and 

networks. The master node often called as head node is used for deploying the cluster of compute nodes, 

managing the compute nodes images, user logins and access, providing a compilation environment as 

modules, and tools to support job submissions to compute nodes. The compute nodes are the work horse and 

execute the submitted jobs.  Software from Bright Computing called Bright Cluster Manager is used to deploy 

and manage the whole cluster.  

Figure 2 shows the high-level overview of the cluster which includes one head node, n compute nodes, the 

local disks on the cluster head node exported over NFS, Isilon storage, and two networks. All compute nodes 

are interconnected through an InfiniBand switch. The head node is also connected to the InfiniBand switch as 

it needs to access the Isilon storage when included and uses IPoIB to export the scratch space of NFS share 

to the compute nodes. All compute nodes and the head node are also connected to a 1 Gigabit Ethernet 

management switch which is used for in-band and out of band management via iDRAC9 (Integrated Dell 

Remote Access Controller) as well as provisioning and deployment network by Bright Cluster Manager to 

administer the cluster. An Isilon storage solution is connected to the FDR-40GigE Gateway switch so that it can 

be accessed by the head node and all compute nodes.  

 

Figure 2: The overview of the cluster 

2.1 Head Node Configuration 
The Dell EMC PowerEdge R740xd is recommended for the role of the head node. This is Dell EMC’s latest two 

socket, 2U rack server that can support the memory capacities, I/O needs and network options required of the 

head node. The head node will perform the cluster administration, cluster management, NFS server, user login 

node and compilation node roles.  

The suggested configuration of the PowerEdge R740xd is listed in Table 1. It includes 12 x 12TB NL SAS local 

disks that are formatted as an XFS file system and exported via NFS to the compute nodes over Ethernet, and 

the scratch space of the local disks are exported via NFS to the compute nodes over IPoIB. RAID 50 is used to 

build this solution and is considered due to the faster rebuild time and capacity advantages. Details of each 

configuration choice are described in the following sections. For more information on this server model please 

refer to PowerEdge R740/740xd Technical Guide.  

 

Head Node

FDR – 40GigE Gateway

 ...

 ...

Isilon

Compute Node 0 Compute Node 1 Compute Node n-2 Compute Node n-1

Local Disk

IB EDR Switch1GigE Management switch

Ethernet connection

InfiniBand connection

http://www.brightcomputing.com/documentation
http://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/PowerEdge_R740_R740xd_Technical_Guide.pdf
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Table 1: PowerEdge R740xd configurations 

Component Details 

Server Model PowerEdge R740xd 

Processor 2 x Intel Xeon Gold 6148 CPU @ 2.40GHz 

Memory 24 x 16GB DDR4 2666MT/s DIMMs - 384GB 

Disks 12 x 12TB NL SAS RAID 50 

I/O & Ports Network daughter card with 2 x 10GE + 2 x 1GE 

Network Adapter 1x InfiniBand EDR adapter 

Out of Band Management iDRAC9 Enterprise with Lifecycle Controller 

Power Supplies Titanium 1100W, Platinum 

Storage Controllers PowerEdge RAID Controller (PERC) H730p 

 

2.1.1 Shared Storage via NFS over InfiniBand 
The default shared storage system for the cluster is provided over NFS. It is built using 12x 12TB NL SAS disks 

that are local to the head node configured in RAID 50 with two parity check disks. This provides usable capacity 

of 120TB (109TiB). RAID 50 was chosen because it has balanced performance and shorter rebuild time 

compared to RAID 6 or RAID 60 (and also since RAID 50 has fewer parity disks than RAID 6 or RAID 60). This 

120TB volume is formatted as an XFS file system and exported to the compute nodes via NFS.  

In the default configuration, both home directories and shared application and library install locations are hosted 

on this NFS share and they are exported to the compute nodes over Ethernet. The scratch space of the local 

disks is exported via NFS through IPoIB. The scratch space stores the users’ data files. In addition to this, for 

solutions which require a larger capacity shared storage solution, the Isilon F800 is as an alternative option and 

is described in Section 2.5.  

2.2 Compute Node Configuration 
Deep Learning methods would not have gained success without the computational power to drive the iterative 

training process. Therefore, a key component of Deep Learning solutions is highly capable nodes that can 

support compute intensive workloads. The state-of-the-art neural network models in Deep Learning have more 

than 100 layers which require the computation to be able to scale across many compute nodes in order for any 

timely results. The Dell EMC PowerEdge C4140, an accelerator-optimized, high density 1U rack server, is used 

as the compute node unit in this solution. The PowerEdge C4140 server used is Configuration M, which 

supports four NVIDIA Volta SMX2 GPUs. Figure 3 shows the CPU-GPU and GPU-GPU connection topology 

of a compute node.  

The detailed configuration of each PowerEdge C4140 compute node is listed in Table 2. 

http://www.dell.com/en-us/work/shop/povw/poweredge-c4140
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Figure 3: The topology of a compute node 

Table 2: PowerEdge C4140 Configuration M 

Component Details 

Server Model PowerEdge C4140 Configuration M 

Processor 2 x Intel Xeon Gold 6148 CPU @ 2.40GHz 

Memory 24 x 16GB DDR4 2666MT/s DIMMs - 384GB 

Local Disks 2 x 240GB SSD 

I/O & Ports Network daughter card with 2 x 10GE + 2 x 1GE 

Network Adapter 1 x InfiniBand EDR adapter 

GPU 4 x V100-SXM2-16GB or 4 x V100-SXM2-32GB 

Out of Band Management iDRAC9 Enterprise with Lifecycle Controller 

Power Supplies 2400W hot-plug Redundant Power Supply Unit  

 

2.2.1 GPU 
The NVIDIA Tesla V100 is the latest data center GPU available to accelerate Deep Learning. Powered by 

NVIDIA Volta™, the latest GPU architecture, Tesla V100 GPUs enable data scientists, researchers, and 

engineers to tackle challenges that were once difficult.  With 640 Tensor Cores, Tesla V100 is the first GPU to 

break the 100 teraflops (TFLOPS) barrier of Deep Learning performance.  

Tesla V100 product line includes two variations, V100-PCIe and V100-SXM2. The comparison of two variants 

is shown in Table 3.   
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Table 3: V100-SXM2 vs V100-PCIe 

Description V100-PCIe V100-SXM2 

CUDA Cores 5120 5120 

GPU Max Clock Rate (MHz) 1380 1530 

Tensor Cores 640 640 

GPU Memory 16GB or 32GB 16GB or 32GB 

Memory Bandwidth (GB/s) 900 900 

NVLink Bandwidth (GB/s) (uni-direction) N/A 300 

Deep Learning (Tensor OPS) 112 120 

TDP (Watts) 250 300 

 

In the V100-PCIe, all GPUs communicate with each other over PCIe buses. With the V100-SXM2 model, all 

GPUs are connected by NVIDIA NVLink. In use-cases where multiple GPUs are required, the NVLink 

interconnect used by V100-SXM2 cards provide the advantage of faster GPU-to-GPU communication when 

compared to PCIe.  V100-SXM2 GPUs provide six NVLinks per GPU for bi-directional communication. The 

bandwidth of each NVLink is 25GB/s in uni-direction and all four GPUs within a node can communicate at the 

same time, therefore the theoretical peak bandwidth is 6*25*4=600GB/s in bi-direction. However, the theoretical 

peak bandwidth using PCIe is only 16*2=32GB/s as the GPUs can only communicate serially, which means the 

communication cannot be done in parallel. So in theory the data communication with NVLink could be up to 

600/32=18x faster than PCIe. Because of this advantage, the PowerEdge C4140 compute node in the Deep 

Learning solution uses V100-SXM2 instead of V100-PCIe GPUs. In this solution, both 16GB and 32GB V100-

SXM2 are supported. 

2.3 Processor recommendation for Head Node and Compute Nodes 
The processor chosen for the head node and compute nodes is Intel® Xeon® Gold 6148 CPU. This is the latest 

Intel® Xeon® Scalable processor with 20 physical cores.  Additionally, this CPU model is recommended for the 

compute nodes as well, making this a consistent choice across the cluster. 

2.4 Memory recommendation for Head Node and Compute Nodes 
The recommended memory for the head node is 24x 16GB 2666MT/s DIMMs. Therefore, the total size of 

memory is 384GB. This is chosen based on the following facts: 

• Capacity: An ideal configuration must support system memory capacity that is larger than the total size 

of GPU memory. Each compute node has 4 GPUs and each GPU has 16GB or 32GB memory, so the 

system memory must be at least 16GBx4=64GB. The head node memory also affects I/O performance. 

For NFS service, larger memory will reduce disk read operations since NFS service needs to send out 

data from memory. 16GB DIMMs demonstrate the best performance/dollar value. 

• DIMM configuration: Choices like 24x 16GB or 12x 32GB will provide the same capacity of 384GB 

system memory, but according to our studies as shown in Figure 4, the combination of 24x 16GB 

DIMMs provides 11% better performance than using 12x 32GB. The results shown here was on the 

Intel Xeon Platinum 8180 processor, but the same trends will apply across other models in the Intel 

https://www.nvidia.com/en-us/data-center/nvlink/
https://downloads.dell.com/manuals/all-products/esuprt_software/esuprt_it_ops_datcentr_mgmt/high-computing-solution-resources_white-papers89_en-us.pdf
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Scalable Processor Family including the Gold 6148, although the actual percentage differences across 

configurations may vary. More details can be found in our Skylake memory study.  

• Serviceability: The head node and compute nodes memory configurations are designed to be similar 

to reduce parts complexity while satisfying performance and capacity needs. Fewer parts need to be 

stocked for replacement, and in extreme urgent cases if a memory module in the head node needs to 

be replaced immediately, a DIMM module from a compute node can be temporarily considered to 

restore the head node until replacement modules arrive.   

 

Figure 4: Relative memory bandwidth for different system capacities 

2.5 Isilon Storage 
Dell EMC Isilon  is a proven scale-out network attached storage (NAS) solution that can handle the unstructured 

data prevalent in many different workflows. The Isilon storage architecture automatically aligns application 

needs with performance, capacity, and economics. As performance and capacity demands increase, both can 

be scaled simply and non-disruptively, allowing applications and users to continue working. 

Dell EMC Isilon OneFS operating system powers all Dell EMC Isilon scale-out NAS storage solutions and has 

the following features. 

• A high degree of scalability, with grow-as-you-go flexibility  

• High efficiency to reduce costs  

• Multi-protocol support such as SMB, NFS, HTTP and HDFS to maximize operational flexibility  

• Enterprise data protection and resiliency  

• Robust security options 

The recommended Isilon storage is Isilon F800 all-flash scale-out NAS storage. Dell EMC Isilon F800 all-flash 

Scale-out NAS storage is uniquely suited for modern Deep Learning applications delivering the flexibility to deal 

with any data type, scalability for data sets ranging in the PBs, and concurrency to support the massive 

concurrent I/O request from the GPUs.  Isilon’s scale-out architecture eliminates the I/O bottleneck between 

storage and compute, allowing you to start with 10’s of TB’s of data with up to 15 GB/s bandwidth and then you 

can scale-out up to 68 PB with up to 540 GB/s of performance in a single cluster.  This allows Isilon to accelerate 

AI innovation with faster model training, provide more accurate insights with deeper data sets, and deliver a 

higher ROI by fully saturating the data requests of up to 1000’s of GPU’s per cluster.  
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The Isilon storage can be used if the local NFS storage capacity is insufficient for the environment. If the Isilon 

is used in conjunction with the local NFS storage, datasets and project results can be stored on the Isilon with 

applications installed on the local NFS. The specifications of the Isilon F800 are listed in Table 4. 

Table 4: Specification of Isilon F800 

External storage Isilon F800 All‑flash Scale-out NAS 

Bandwidth 15 GB/s per chassis, Scales to 540 GB/s per cluster 

IOPS 250,000 IOPS per chassis, Scales to 9 Million IOPS per cluster 

Chassis Capacity (4U) 1.6 TB SSD x 60 3.2 TB SSD x 60 15.4 TB SSD x 60 

96 TB 192 TB 924 TB 

Cluster Capacity All-Flash: 96TB up to 33 PB; Hybrid: 96TB up to 68 PB 

Network 8x 40GbE (QSFP+) per chassis, (2x per node) 

 

This solution is also capable of mounting existing external storage on either the head node or each compute 

node.   

To monitor and analyze the performance and file system of Isilon storage, the tool InsightIQ can be used. 

InsightIQ allows a user to monitor and analyze Isilon storage cluster activity using standard reports in the 

InsightIQ web-based application. The user can customize these reports to provide information about storage 

cluster hardware, software, and protocol operations. InsightIQ transforms data into visual information that 

highlights performance outliers, and helps users diagnose bottlenecks and optimize workflows. For more details 

about InsightIQ, refer to Isilon InsightIQ User Guide.  

2.6 Network 
The solution comprises of three network fabrics. The head node and all compute nodes are connected with a 

1 Gigabit Ethernet fabric. The Ethernet switch recommended is the Dell Networking S3048-ON which has 48 

ports. This connection is primarily used by Bright Cluster Manager for deployment, maintenance and monitoring 

the solution.  

The second fabric connects the head node and all compute nodes are through 100 Gb/s EDR InfiniBand. The 

EDR InfiniBand switch is Mellanox SB7800 which has 36 ports. This fabric is used for Inter-Process 

Communication (IPC) by the applications as well as to serve NFS from the head node (IPoIB) and Isilon. GPU-

to-GPU communication across servers can use a technique called GPUDirect Remote Direct Memory Access 

(RDMA) which is supported by InfiniBand. This enables GPUs to communicate directly without the involvement 

of CPUs. Without GPUDirect, when GPUs across servers need to communicate, the GPU in one node has to 

copy data from its GPU memory to system memory, then that data is sent to the system memory of another 

node over the network, and finally the data is copied from the system memory of the second node to the 

receiving GPU’s memory. With GPUDirect however, the GPU on one node can send the data directly from its 

GPU memory to the GPU memory in another node, without going through the system memory in both nodes. 

Therefore GPUDirect decreases the GPU-GPU communication latency significantly.  

The third switch in the solution is called a gateway switch in Figure 2 and connects the Isilon F800 to EDR 

switch. Isilon’s external interfaces are 40 Gigabit Ethernet. Hence, a switch which can serve as the gateway 

between the 40GbE Ethernet and InfiniBand networks is needed for connectivity to the head and compute 

https://www.emc.com/collateral/TechnicalDocument/docu65870.pdf
https://ieeexplore.ieee.org/abstract/document/6687341/
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nodes. The Mellanox SX6710G is used for this purpose. The gateway is connected to the InfiniBand EDR switch 

and the Isilon as shown in Figure 2. 

2.7 Software 
The software portion of the solution is provided by Dell EMC and Bright Computing. The software includes 

several pieces.  

The first piece is Bright Cluster Manager which is used to easily deploy and manage the clustered infrastructure 

and provides all cluster software including the operating system, GPU drivers and libraries, InfiniBand drivers 

and libraries, MPI middleware, the Slurm schedule, etc.  

The second piece is the Bright machine learning (ML) which includes any deep learning library dependencies 

to the base operating system, deep learning frameworks including Pytorch, Theano, Tensorflow, Horovod, 

Keras, DIGITS, CNTK and MXNet, and deep learning libraries including cuDNN, NCCL, and the CUDA toolkit.  

The third piece is the Data Science Provisioning Portal which was developed by Dell EMC. The portal was 

created to abstract the complexity of the deep learning ecosystems by providing a single pane of glass which 

provides users with an interface to get started with their models. The portal includes spawner for Jupyterhub 

and integrates with  

• Resource managers and schedulers (Slurm) 

• LDAP for user management 

• Deep Learning framework environments (Tensor Flow, Keras, MXNet, Pytorch etc.) from Bright’s 

module environment, Python2, Python3 and R kernel support 

• TensorBoard 

• Terminal CLI environments.  

It also provides templates to get started with for various DL environments and adds support for singularity 

containers. For more details about how to use the Data Science Provisioning Portal, refer to Section 4. 

2.8 NVIDIA DIGITS Tool and the Deep Learning Solution 
DIGITS is a web frontend to Caffe, Torch and TensorFlow, developed by NVIDIA. The user can use the DIGITS 

graphical user interface for Deep Learning training and inference. The Deep Learning Solution presented in this 

paper integrates the DIGITS software with the cluster software making it trivial for the system administrator to 

deploy DIGITS for the users, and easy for the user to use DIGITS.  

In order to use DIGITS, the user first needs to allocate the resource, load the DIGITS module and start DIGITS 

service by running “digits-devserver”. These steps are listed in Figure 5. 

[user1@headnode ~]$ srun -N 1 -n 8 -p shareq --gres=gpu:2 --mem=96G -t 8:00:00 --pty bash  

[user1@node001 ~]$ module load shared digits/6.1.1 

[user1@node001 ~]$ mkdir –p /home/user1/digits-logs 

[user1@node001 ~]$ export DIGITS_JOBS_DIR=/home/user1/digits-logs 

[user1@node001 ~]$ /cm/shared/apps/digits/6.1.1/digits-devserver 

Figure 5: How to initialize DIGITS on the Deep Learning Solution 

Once the DIGITS server is up and running, a web browser can be used to navigate to the home page of DIGITS. 

As shown in Figure 6, the DIGITS home page can be accessed from “http://node001:5000”. To know how to 

use DIGITS in more details, refer to Bright Computing’s Machine Learning Manual Chapter 2 which includes an 

example on handwritten digits recognition using a Caffe backend.  

http://www.brightcomputing.com/
http://www.brightcomputing.com/product-offerings/bright-cluster-manager-for-hpc
http://www.brightcomputing.com/solutions/deep-learning
https://developer.nvidia.com/digits
http://support.brightcomputing.com/manuals/8.1/machine-learning-manual.pdf
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Figure 6: DIGITS home page 
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3 Containers for Deep Learning 
Deep Learning frameworks tend to be complex to install and configure with a myriad of library dependencies. 

These frameworks and their requisite libraries are under constant development, which makes test environment 

and test result reproducibility a challenge for researchers. Another layer of complexity is that most enterprise 

data centers use Red Hat Enterprise Linux (or its derivatives) whereas Ubuntu is the default target for most 

Deep Learning frameworks.  

Containerization technology has surged in popularity as it is a powerful tool for handling the three issues just 

described – portable test environment, reduced dependency on the underlying operating system and better test 

result reproducibility. A container packs all the environment and libraries an application needs into an image file 

and this container can be deployed without any additional changes. It also allows users to easily create, 

distribute and destroy a container image. Compared to Virtual Machines, containers are lightweight with less 

overhead. In this section, Singularity, a container designed specifically for use in HPC environments, is used to 

containerize different Deep Learning applications.  

3.1 Singularity Containers  
Singularity is developed by Lawrence Berkeley National Laboratory to provide container technology specifically 

for HPC. It enables applications to be encapsulated in an isolated virtual environment to simplify application 

deployment. Unlike virtual machines, the container does not have a virtual hardware layer and its own Linux 

kernel inside the host operating system (OS), therefore the overhead and the performance loss are minimal. 

The main goal of the container is flexibility and reproducibility. The container has all environment and libraries 

an application needs to run, and it is portable so that other users can reproduce the results the container creator 

generated for that application. To use Singularity container, the user only needs to load its module using the 

command “module load singularity” inside a Slurm script which will be described in Section 4.3. 

Many HPC applications, especially Deep Learning applications, have extensive library dependencies and it is 

time consuming to solve these dependencies and debug build issues. Most Deep Learning frameworks are 

developed in Ubuntu, but they need to be deployed to Red Hat Enterprise Linux (RHEL). It is therefore beneficial 

to build those applications once in a container and then deploy them anywhere. The most important goal of 

Singularity is portability which means once a Singularity container is created, the container should be able to 

run on any system. However, there may be kernel dependencies to consider if a user needs to leverage any 

kernel specific functionality (e.g. OFED). Usually a user would build a container on a laptop or a server, a cluster 

or a cloud, and then deploy that container on a server, a cluster or a cloud. 

When building a container, one challenge is when using GPU-based systems. If GPU drivers are installed inside 

the container, and the driver version does not match the host GPU driver, then an error will occur. Hence the 

container should always use the host GPU driver. The next option is to bind the paths of the GPU driver binary 

file and libraries to the container so that these paths are visible to the container. However, if the container OS 

is different than the host OS, such binding may have problems. For instance, assume the container OS is 

Ubuntu while the host OS is RHEL, and on the host the GPU driver binaries are installed in /usr/bin and the 

driver libraries are installed in /usr/lib64. Note that the container OS also has /usr/bin and /usr/lib64; 

therefore, if we bind those paths from the host to the container, the other binaries and libraries inside the 

container may not work anymore because they may not be compatible across different Linux distributions. One 

workaround is to move all those driver related files to a new central directory location that does not exist in the 

container and then bind that central location. 

The second solution is to implement the above workaround inside the container so that the container can use 

the driver related files automatically. This feature has already been implemented in the development branch of 

Singularity repository. A user simply needs to use the option “--nv” when launching the container. However, a 

https://www.nextplatform.com/2018/03/19/singularity-containers-for-hpc-deep-learning/
https://singularity.lbl.gov/
http://www.lbl.gov/
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cluster environment typically installs GPU driver in a shared file system instead of the default local path on all 

nodes, and in this case, Singularity is unable to find the GPU driver path since the driver is not installed in the 

default or common paths (e.g. /usr/bin, /usr/sbin, /bin, etc.). Even if the container is able to find the 

GPU driver and the corresponding driver libraries and the container is built successfully, the host driver version 

on the target system must be updated enough to support the GPU libraries which were linked to the application 

when building the container, else an error will occur due to outdated and incompatible versions between the 

host system and the container. Given the backward compatibility of GPU drivers, the burden is on the cluster 

system administrators to keep GPU drivers up to date to ensure the cluster GPU libraries are equal to or newer 

than the versions of the GPU libraries used when building the container. 

Another challenge is when using InfiniBand with the containers because the InfiniBand driver is kernel 

dependent. There should be no issues if the container OS and host OS are similar or compatible. For instance, 

RHEL and Centos are compatible, and Debian and Ubuntu are compatible. But if these two OSs are not 

compatible, then there will be library compatibility issues if the container attempts to use the host InfiniBand 

driver and libraries. If the InfiniBand driver is installed inside the container, then the drivers in the container and 

the host might not be compatible since the InfiniBand driver is kernel dependent and the container and the host 

share the same kernel. If the container and host have different InfiniBand drivers, then a conflict will occur. The 

Singularity community is working to solve this InfiniBand issue. The current solution is to ensure the container 

OS and host OS are compatible and allow the container to reuse the InfiniBand driver and libraries on the host. 

These are only workarounds. The container community is still pushing hard to make containers portable with 

ease across platforms. 

3.2 Running NVIDIA GPU Cloud with the Ready Solutions for AI - Deep 

Learning 
NVIDIA GPU Cloud (NGC) is a cloud that hosts the Docker container images of many Deep Learning 

frameworks and HPC applications. The Deep Learning frameworks include TensorFlow, MXNet, PyTorch, and 

so on. These frameworks are optimized for NVIDIA GPUs.  

Docker is a very prominent containerization technology used avidly in the context of deep learning frameworks. 

There are several pros and cons of Docker and a comparison between Docker and Singularity containers is 

shown “Singularity Containers for HPC & Deep Learning”. NVIDIA added the GPU support in Docker.  

Docker is not installed by default in this solution. However, the administrator is expected to simply run cm-

docker-setup utility provided by Bright Cluster Manager. After installing Docker, the user is able to use the 

Docker images provided by NVIDIA GPU Cloud which will be discussed next. 

To use NGC, a user needs to first register in the cloud and get an API key that is specific to that user. Figure 7 

shows the registration page. The user can create an account based on the instructions on the screen. 

https://www.nvidia.com/en-us/gpu-cloud/
https://www.docker.com/
https://www.nextplatform.com/2018/03/19/singularity-containers-for-hpc-deep-learning/
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Figure 7: NVIDIA GPU Cloud register page 

After creating the account, the user will be forwarded to the registry page which lists the available repositories 

(Figure 8).  

 

Figure 8: NVIDIA GPU Cloud registry page 
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In Figure 8, clicking the button “Get API Key” on the top right will take the user to the configuration page as 

shown in Figure 9. “Generate API Key” will generate an API key that is specific to the registered user.  

 

Figure 9: NVIDIA GPU Cloud configuration page 

A user can download the Docker image of a framework directly with the command in Figure 10.  

 $ docker login nvcr.io 

  Username: $oauthtoken 

  Password:  

  Login Succeed 

 $ docker pull nvcr.io/nvidia/mxnet:17.10 

 $ docker images 

  REPOSITORY                  TAG                 IMAGE ID            CREATED             

SIZE 

  nvcr.io/nvidia/mxnet        17.10               9a4558c1fa1a        7 months ago        

2.6GB 

 $ nvidia-docker run --interactive --detach 9a4558c1fa1a 

 $ docker exec 5d2405dbb31c python /opt/mxnet/example/image-

classification/train_mnist.py --gpu 0 --num-epochs 10 

 

Figure 10: Steps to download a Docker image from NGC 

If the user wants to use Singularity container instead of Docker containers, Figure 11 shows how to create a 

Singularity image from the Docker image downloaded from NGC. The user must provide a set of environment 

variables which includes the user’s NGC API key, and then use sregistry to convert a Docker image to 

Singularity image. After the Singularity image is generated, the user can use “exec” or other commands to 
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execute the script run_script.sh within the created Singularity container. For more Singularity commands, 

please refer to Singularity User Guide.  

  $ pip install sregistry  

  $ export SREGISTRY_NVIDIA_BASE=``ngcr.io” 

  $ export SREGISTRY_CLIENT=nvidia 

  $ export SREGISTRY_NVIDIA_USERNAME='$oauthtoken’ 

  $ export SREGISTRY_NVIDIA_TOKEN='[NGC_API_KEY]’ 

  $ sregistry backend activate nvidia 

  $ sregistry pull mxnet:18.11-py3 

   Success! /home/user1/.singularity/shub/nvidia-mxnet-18.11-py3-latest.simg 

  $ singularity exec /home/user1/.singularity/shub/nvidia-mxnet-18.11-py3-latest.simg 

run_script.sh 
 

Figure 11: The commands of creating Singularity image from NGC 

http://singularity.lbl.gov/user-guide
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4 The Data Science Provisioning Portal 
The data science provisioning portal was developed by Dell EMC and it simplifies the users’ work allowing 

model implementation, training and inference tests to be run in Jupyter Notebook or directly from the Linux 

terminal. The Jupyter Notebook allows a user to write explanatory text and intersperse it with raw codes and 

the tables and figures that those codes generate. It allows a user to directly execute the codes that are 

embedded in the document that is being created or has been created. The portal also allows multiple users to 

request resources from the cluster without causing conflicts. In the current version, the resources allocated by 

the portal is limited to utilizing up to 4 GPUs from a single node. If the user needs to use resources that span 

across two or more nodes, the request should be submitted directly to the Slurm job scheduler as described in 

Section 4.3. A deeper dive into the portal and its components is listed in Section 2.7. 

4.1 Creating and Running a Notebook 
A user can access the portal via a web browser on port 8000 (Figure 12). The user can specify the address 

either through “localhost” if logging to the cluster head node, or through the cluster head node IP address 

without logging directly into the cluster first. The portal uses the same username and password that is provided 

for logging into the cluster. 

 

Figure 12: Portal login screen 

After logging in, the page is forwarded to the server page (Figure 13). It lists the available server.  

 

Figure 13: Portal server page 

http://jupyter.org/
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After clicking the “My Server” button, the user is forwarded to a list of instance options (Figure 14).  The user 

is given options to choose how many GPUs are being requested. For each allocated GPU, 8 CPU cores and 

48GB system memory are allocated. By default, 8 hours of session time is allocated to the user.  

 

Figure 14: Portal instance screen 

After the resources are allocated, the portal goes to the landing screen (Figure 15). It includes the folder 

“templates” which contains a set of template files of running different Deep Learning frameworks and libraries, 

and “isilon” which is the mount point where Isilon storage is mounted.   

 

Figure 15: Portal landing screen 

 

Figure 16: The list of available framework Jupyter Notebook templates 

Clicking the “New” button in Figure 15 displays a list of kernels (Figure 17). A user can choose Python 2 or 

Python 3 kernel depending on the user’s preferred Python version. The portal also provides R kernel so that 

the user can use R package. In “Other” kernels, the user can create a text file, a folder, launch a terminal or 
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launch a TensorBoard. Figure 18 is a screenshot after launching a terminal. How to use TensorBoard is shown 

in Section 4.2. 

 

Figure 17: Portal kernel list 

 

 

Figure 18: Portal terminal kernel 

In the list of framework templates, choosing “tensorflow” will bring up the MNIST handwritten digits 

classification example shown in Figure 19. Now click on “Kernel” tab and select “Restart and Run all” as 

shown in Figure 20, the training of the handwritten digits classification will start. An example output is shown in 

Figure 21.  

 

Figure 19: TensorFlow notebook 
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Figure 20: TensorFlow notebook handwritten digits classification 

 

Figure 21: TensorFlow notebook handwritten digits classification output  

 

 

After the user starts a kernel, the kernel will keep running until being stopped or the session reaches the end of 

the allocated time. To stop a kernel, the user needs to click the “Control Panel” in Figure 17, then the page 

will go to the page in Figure 22. After clicking “Stop My Server”, the kernel will be stopped. 
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Figure 22: Stop the server 

4.2 TensorBoard Integration 
Besides the TensorFlow framework, the portal also provides the TensorBoard visualization tool. The 

TensorBoard is used to visualize the TensorFlow computation graph, plot quantitative metrics about the 

execution of a graph, and show some other additional data. To use TensorBoard, the user needs to use 

TensorFlow FileWriter API to serialize the wanted data into a directory. Figure 23 shows an example in which 

the TensorFlow outputs the serialized data into the folder “logs”.   

 

Figure 23: An example of using TensorBoard 

After all serialized data are written into the folder “logs”, the user can choose that folder and then TensorBoard 

button will be shown up. Then the user clicks “Tensorboard”, TensorBoard will output all information in a 

separate tab as shown in Figure 24. The output result in Figure 24 is only an example. A user may get a different 

result depending on what information is written to the log files. 

 

Figure 24: An example TensorBoard output 
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4.3 Slurm Scheduler 
Section 4.1 describes the data science provisioning portal, but the current portal version can allocate resources 

only within single node. To use resources on multiple nodes, the user can use Slurm job scheduler. The Slurm 

scheduler is used to manage the resource allocation and job submissions for all users in a cluster. To use 

Slurm, the user needs to submit a script on the cluster head node that specifies what resources are required 

and what job should be executed on those resources once allocated. 

Figure 25 shows an example Slurm script. In this example, the user asks for 2 nodes (-N) and 4 tasks per node 

(--ntasks-per-node), resulting in 8 tasks in total (-n). One task implies one CPU process. Nodes that include 

four GPUs are requested using the –gres=gpu:4 descriptor. This job will be submitted to the “sxm2” queue (-

p). 

The job itself will run two commands: “hostname” and “p2pBandwidthLatencyTest” from the CUDA SDK. Since 

running this job requires CUDA toolkit, the user also needs to load the module files for “shared” and 

“cuda91/toolkit” that set the path and environment variables needed to execute the 

p2pBandwidthLatencyTest test. 

The command “sinfo” can be used to check on the types of resources available on the system. Figure 26 

shows an example output before running sample.job. After checking enough resources are available, the script 

can be run with the command “sbatch sample.job”. The command “squeue” can be used to query the status 

of running jobs. Figure 27 shows an example output after running “squeue” to check the status of the current 

jobs. Note the output script name includes the Slurm job number that was visible in the squeue command 

output. An example output file name for Figure 25 is slurm-27325.out where 27325 is an example job id. Figure 

28 shows an example content of this file. The output file displays the hostname and the output of 

p2pBandwidthLatencyTest. Note that although the script in Figure 25 allocated 8 processes, it only used one 

process in the execution command. To use all processes, the user can use MPI or other multi-process 

programming model.  

NOTE: The queue names, slurm features depend on how Slurm is configured.  

#!/bin/bash 

#SBATCH -N 2 

#SBATCH -n 8 

#SBATCH --ntasks-per-node 4 

#SBATCH -p sxm2 

#SBATCH --gres=gpu:4 

module load shared 

module load cuda92/toolkit 

hostname 

/cm/shared/apps/cuda92/sdk/9.2.88/bin/x86_64/linux/release/p2pBandwidthLatencyTest 
 

Figure 25: An example Slurm job script named sample.job 

 

 

https://slurm.schedmd.com/


 

26 Dell EMC Ready Solutions for AI – Deep Learning with NVIDIA  

 

PARTITION  AVAIL  TIMELIMIT NODES  STATE  NODELIST 

hipri*      up   12:00:00   17     down*  node[001-007,009-010,012,015-016,018-019] 

sxm2        up   12:00:00   2      idle   node[008,014] 

iq          up   6:00:00    2      down*  node[011,013] 

requestq    up   infinite   2      idle   node[008,014] 

Figure 26: An example output of the command sinfo before running sample.job 

JOBID     PARTITION     NAME     USER    ST      TIME  NODES NODELIST(REASON) 

 27325     sxm2        sample.j  root     R      0:01   2    node[008,014] 

Figure 27: An example output of the command squeue showing the job status 

node008 

[P2P (Peer-to-Peer) GPU Bandwidth Latency Test] 

Device: 0, Tesla V100-SXM2-32GB, pciBusID: 18, pciDeviceID: 0, pciDomainID:0 

Device: 1, Tesla V100-SXM2-32GB, pciBusID: 3b, pciDeviceID: 0, pciDomainID:0 

Device: 2, Tesla V100-SXM2-32GB, pciBusID: 86, pciDeviceID: 0, pciDomainID:0 

Device: 3, Tesla V100-SXM2-32GB, pciBusID: af, pciDeviceID: 0, pciDomainID:0 

Device=0 CAN Access Peer Device=1 

Device=0 CAN Access Peer Device=2 

Device=0 CAN Access Peer Device=3 

Device=1 CAN Access Peer Device=0 

Device=1 CAN Access Peer Device=2 

Device=1 CAN Access Peer Device=3 

Device=2 CAN Access Peer Device=0 

Device=2 CAN Access Peer Device=1 

Device=2 CAN Access Peer Device=3 

Device=3 CAN Access Peer Device=0 

Device=3 CAN Access Peer Device=1 

Device=3 CAN Access Peer Device=2 

 

***NOTE: In case a device doesn't have P2P access to other one, it falls back to normal 

memcopy procedure. 

So you can see lesser Bandwidth (GB/s) and unstable Latency (us) in those cases. 

 

P2P Connectivity Matrix 

     D\D     0     1     2     3 

     0       1     1     1     1 

     1       1     1     1     1 

     2       1     1     1     1 

     3       1     1     1     1 

Unidirectional P2P=Disabled Bandwidth Matrix (GB/s) 

   D\D     0      1      2      3 

     0 730.14  10.93  11.00  10.97 

     1  10.93 739.82  10.99  10.96 

     2  11.03  10.93 741.22  10.97 

     3  11.03  10.93  10.99 741.22 

Unidirectional P2P=Enabled Bandwidth (P2P Writes) Matrix (GB/s) 

   D\D     0      1      2      3 

     0 732.88  48.33  48.35  48.32 

     1  48.33 742.63  48.33  48.35 

     2  48.33  48.35 741.22  48.36 

     3  48.34  48.36  48.32 741.22 

Bidirectional P2P=Disabled Bandwidth Matrix (GB/s) 

   D\D     0      1      2      3 

     0 746.89  19.30  19.92  19.31 

     1  19.39 751.92  20.08  19.37 

     2  19.53  19.22 749.04  19.29 

     3  19.45  19.57  19.37 757.76 

Bidirectional P2P=Enabled Bandwidth Matrix (GB/s) 

   D\D     0      1      2      3 

     0 754.79  96.26  96.47  96.48 
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     1  96.28 755.56  96.51  96.50 

     2  96.47  96.28 755.56  96.28 

     3  96.30  96.30  96.53 757.03 

P2P=Disabled Latency Matrix (us) 

   GPU     0      1      2      3 

     0   1.88  14.54  15.57  15.67 

     1  14.71   1.96  15.77  15.47 

     2  15.49  15.41   1.84  14.43 

     3  15.52  15.51  14.42   1.84 

 

   CPU     0      1      2      3 

     0   3.82  10.69  10.13   9.11 

     1  10.25   4.19  10.69   9.74 

     2   9.95  10.85   4.04   9.33 

     3   9.31  10.19   9.76   3.46 

P2P=Enabled Latency (P2P Writes) Matrix (us) 

   GPU     0      1      2      3 

     0   1.87   1.72   1.72   1.71 

     1   1.70   2.09   1.70   1.70 

     2   1.65   1.64   1.88   1.64 

     3   1.64   1.64   1.64   1.84 

 

   CPU     0      1      2      3 

     0   3.63   2.67   2.64   2.66 

     1   2.94   4.19   2.96   3.01 

     2   2.74   2.74   4.03   2.73 

     3   2.46   2.44   2.51   3.45 

 

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary 

when GPU Boost is enabled. 

Figure 28: An example output for the after running sample.job. The file name is slurm-27325.out. 
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5 Conclusions 
This document describes the integrated Dell EMC Ready Solutions for AI - Deep Learning with NVIDIA. The 

goal of this solution is to provide a complete, tuned and supported solution for Deep Learning training and 

inference use cases. The solution takes into account the ideal compute, storage, network, and software 

configuration for this workload. It includes tools that improve the usability of the system for data scientists, like 

the Data Science Provisioning Portal that makes it easy for users to develop, train and run inferencing for Deep 

Learning models. The solution pre-installs a set of frameworks and libraries that are necessary for Deep 

Learning in addition to all other the software (operating system, drivers, libraries, management utilities, resource 

manager) required on a cluster. 


