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Motivation

Motivation

Our targets are geophysical applications for oil and gas exploration

Terabytes of seismic data is used both during I/O and computing.
Many industrial applications face same challanges.

Efficient use of parallel I/O within MPI applications

Workers dont know the amount of data to write until runtime, and
they work in embarrising parallel fashion, light synchronization during
computing
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Methodology
Task Scheduling Strategy

Master: manage all tasks in global task queues

Worker: request and execute tasks from global task queues

Figure: Dynamic Load Balancing Framework
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Methodology
Parallel I/O Mechanism

I/O node is added to coordinate communication

An I/O FIFO mechanism is implemented

The global I/O position is updated atomically

The synchronization overhead among compute nodes is eliminated

Figure: Parallel I/O Design in Target Applications
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Methodology
Buffered I/O and Parallel I/O Interfaces

The buffer size should be page-aligned and stripe-aligned

The reason to be stripe-aligned is to avoid strip lock contention

The buffer size that maximize the bandwidth is 4MB

POSIX I/O uses lseek(), read() and write() to locate, read and write
file.

Memory-mapped file uses memory mapping to map a file from disk to
process’ address space

Multiple processes can map the same file into memory to share data

Page fault overhead when first loading file to memory
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Methodology
Storage System Considerations

Parallel file system: Panasas (v4.0.1)
Clean data: data in client and storage are consistent
Dirty data: data in client and the storage are inconsistent
Read/Write (RW) and Concurrent Write (CW) mode (11.54 MB/s vs
147.86 MB/s)
Potential contention even in CW mode, parallel writing serialized by
stripe lock
Solution: write data with multiple of parity stripe width size

Figure: Stripe Lock Contention Example
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Experimental Setup and Results
Experimental Setup

Hardware: RAID 1/5

Network between nodes: Infiniband (bandwidth is 40Gbit/s)

Network connecting cluster and storage: 10 Gbit/s

Table: Configuration of each node in the cluster

Item Description

Machine Type x86 64
CPU Model Intel Xeon X5675
CPU Cores 12 (6 x 2 sockets)
CPU Speed 3.07GHz

Memory Total 48G
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Experimental Setup and Results
Results

Output and input data file size: 100GB
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Figure: Bandwidth of Parallel I/O
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Figure: Speedup of Parallel I/O
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Experimental Setup and Results

Experimental Setup and Results
Write Time

Serial1 (disk-based strategy): every worker writes its output to the
storage system, then the master reads on-by-one those outputs from
the storage system and process them

Serial2 (network-based strategy): every worker sends its output to the
master, which receive and process those outputs in serial fashion

I/O Approach Nodes
1 4 8 16

Serial1 (POSIX I/O) 2007.19 2777.92 3805.56 5860.84
Serial2 (POSIX I/O) 1770.28 1830.28 1910.28 2070.28
Parallel (POSIX I/O) 875.14 313.35 223.94 187.06

Serial1 (Memory-mapping) 3574.04 4318.88 5312.01 7298.24
Parallel (Memory-mapping) 1662.88 493.09 275.45 229.94
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Experimental Setup and Results

Experimental Setup and Results
Read Time

Serial1 (disk-based strategy): the master reads the input data and
then send the data serially to each worker through the disk

Serial2 (network-based strategy): the master reads the input data and
sends to each worker through the network

I/O Approach Nodes
1 4 8 16

Serial1 (POSIX I/O) 1388.96 4014.38 7514.94 14516.06
Serial2 (POSIX I/O) 276.91 336.91 416.91 576.91
Parallel (POSIX I/O) 256.91 97.18 64.71 57.75

Serial1 (Memory-mapping) 2159.44 7148.08 13799.60 27102.64
Parallel (Memory-mapping) 248.28 86.33 55.64 40.46
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Conclusion and Future Work
Conclusion and Future Work

Conclusion
I Our solution reduces the global synchronization and communication

overhead among all processes significantly
I Ensure the dynamic load balancing, especially in a heterogeneous

network
I Our approach is independent of any parallel file system and hardware
I Impressing bandwidth and speedup were achieved, overall scalability of

target application can still be improved
I Up to 30x write improvement and 250x improvement than the worst

serial scenario, results using Panasas

Future Work
I Explore multiple I/O nodes if I/O requests is too intensive
I Apply our strategy to finer granularity level: threads SMP
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Backup slides

Load Balancing Profiling

Figure: Load Unbalanced Profiling Result
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Backup slides

Load Balancing Profiling

Figure: Load Balanced Profiling Result
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