
Filesystem Aware Scalable I/O Framework for
Data-Intensive Parallel Applications

Rengan Xu1 Mauricio Araya-Polo2

Barbara Chapman1

1Department of Computer Science
University of Houston

2Geophysics Development
Repsol

HPDIC Workshop 2013

Rengan Xu et al. HPDIC Workshop 2013 1 / 14



Outline

1 Motivation

2 Methodology

3 Experimental Setup and Results

4 Conclusion and Future Work

Rengan Xu et al. HPDIC Workshop 2013 2 / 14



Motivation

Motivation

Our targets are geophysical applications for oil and gas exploration

Terabytes of seismic data is used both during I/O and computing.
Many industrial applications face same challanges.

Efficient use of parallel I/O within MPI applications

Workers dont know the amount of data to write until runtime, and
they work in embarrising parallel fashion, light synchronization during
computing

Rengan Xu et al. HPDIC Workshop 2013 3 / 14



Methodology

Methodology
Task Scheduling Strategy

Master: manage all tasks in global task queues

Worker: request and execute tasks from global task queues

Figure: Dynamic Load Balancing Framework

Rengan Xu et al. HPDIC Workshop 2013 4 / 14



Methodology

Methodology
Parallel I/O Mechanism

I/O node is added to coordinate communication

An I/O FIFO mechanism is implemented

The global I/O position is updated atomically

The synchronization overhead among compute nodes is eliminated

Figure: Parallel I/O Design in Target Applications

Rengan Xu et al. HPDIC Workshop 2013 5 / 14



Methodology

Methodology
Buffered I/O and Parallel I/O Interfaces

The buffer size should be page-aligned and stripe-aligned

The reason to be stripe-aligned is to avoid strip lock contention

The buffer size that maximize the bandwidth is 4MB

POSIX I/O uses lseek(), read() and write() to locate, read and write
file.

Memory-mapped file uses memory mapping to map a file from disk to
process’ address space

Multiple processes can map the same file into memory to share data

Page fault overhead when first loading file to memory

Rengan Xu et al. HPDIC Workshop 2013 6 / 14



Methodology

Methodology
Storage System Considerations

Parallel file system: Panasas (v4.0.1)
Clean data: data in client and storage are consistent
Dirty data: data in client and the storage are inconsistent
Read/Write (RW) and Concurrent Write (CW) mode (11.54 MB/s vs
147.86 MB/s)
Potential contention even in CW mode, parallel writing serialized by
stripe lock
Solution: write data with multiple of parity stripe width size

Figure: Stripe Lock Contention Example

Rengan Xu et al. HPDIC Workshop 2013 7 / 14



Experimental Setup and Results

Experimental Setup and Results
Experimental Setup

Hardware: RAID 1/5

Network between nodes: Infiniband (bandwidth is 40Gbit/s)

Network connecting cluster and storage: 10 Gbit/s

Table: Configuration of each node in the cluster

Item Description

Machine Type x86 64
CPU Model Intel Xeon X5675
CPU Cores 12 (6 x 2 sockets)
CPU Speed 3.07GHz

Memory Total 48G

Rengan Xu et al. HPDIC Workshop 2013 8 / 14



Experimental Setup and Results

Experimental Setup and Results
Results

Output and input data file size: 100GB

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 4 8 16

M
B

/s

Number of nodes

Write Bandwidth (POSIX I/O)
Read Bandwidth (POSIX I/O)

 Write Bandwidth (Memory-mapping)
 Read Bandwidth (Memory-mapping)

Figure: Bandwidth of Parallel I/O

 2

 4

 6

 8

 10

 12

 14

 16

2 4 8 16
S

p
e
e
d

u
p

Number of nodes

Ideal Speedup
Write Speedup (POSIX I/O)
Read Speedup (POSIX I/O)

Write Speedup (Memory-mapping)
Read Speedup (Memory-mapping)

Figure: Speedup of Parallel I/O

Rengan Xu et al. HPDIC Workshop 2013 9 / 14



Experimental Setup and Results

Experimental Setup and Results
Write Time

Serial1 (disk-based strategy): every worker writes its output to the
storage system, then the master reads on-by-one those outputs from
the storage system and process them

Serial2 (network-based strategy): every worker sends its output to the
master, which receive and process those outputs in serial fashion

I/O Approach Nodes
1 4 8 16

Serial1 (POSIX I/O) 2007.19 2777.92 3805.56 5860.84
Serial2 (POSIX I/O) 1770.28 1830.28 1910.28 2070.28
Parallel (POSIX I/O) 875.14 313.35 223.94 187.06

Serial1 (Memory-mapping) 3574.04 4318.88 5312.01 7298.24
Parallel (Memory-mapping) 1662.88 493.09 275.45 229.94

Rengan Xu et al. HPDIC Workshop 2013 10 / 14



Experimental Setup and Results

Experimental Setup and Results
Read Time

Serial1 (disk-based strategy): the master reads the input data and
then send the data serially to each worker through the disk

Serial2 (network-based strategy): the master reads the input data and
sends to each worker through the network

I/O Approach Nodes
1 4 8 16

Serial1 (POSIX I/O) 1388.96 4014.38 7514.94 14516.06
Serial2 (POSIX I/O) 276.91 336.91 416.91 576.91
Parallel (POSIX I/O) 256.91 97.18 64.71 57.75

Serial1 (Memory-mapping) 2159.44 7148.08 13799.60 27102.64
Parallel (Memory-mapping) 248.28 86.33 55.64 40.46

Rengan Xu et al. HPDIC Workshop 2013 11 / 14



Conclusion and Future Work

Conclusion and Future Work
Conclusion and Future Work

Conclusion
I Our solution reduces the global synchronization and communication

overhead among all processes significantly
I Ensure the dynamic load balancing, especially in a heterogeneous

network
I Our approach is independent of any parallel file system and hardware
I Impressing bandwidth and speedup were achieved, overall scalability of

target application can still be improved
I Up to 30x write improvement and 250x improvement than the worst

serial scenario, results using Panasas

Future Work
I Explore multiple I/O nodes if I/O requests is too intensive
I Apply our strategy to finer granularity level: threads SMP

Rengan Xu et al. HPDIC Workshop 2013 12 / 14



Backup slides

Load Balancing Profiling

Figure: Load Unbalanced Profiling Result

Rengan Xu et al. HPDIC Workshop 2013 13 / 14



Backup slides

Load Balancing Profiling

Figure: Load Balanced Profiling Result

Rengan Xu et al. HPDIC Workshop 2013 14 / 14


	Motivation
	Methodology
	Experimental Setup and Results
	Conclusion and Future Work

