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Motivation

Motivation

GPUs have high compute capability in HPC, but programming these
devices is a challenge

Low-level models: CUDA, OpenCL
I Language extension
I Time-consuming to write and error-prone

High-level models: OpenACC, PGI, HMPP
I Directive based
I Hiding low-level details from the programmer
I Reduce learning curve and development time

Multi-GPU support:
I One node: OpenMP + OpenACC
I Multiple nodes: MPI + OpenACC
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Overview of OpenMP and OpenACC

Overview of OpenMP and OpenACC

OpenMP
I Directive-based model for shared memory system
I Contains directives, runtime routines and environment variables
I Fork-join model
I Threads communicate via shared variables

OpenACC
I Standard for directive-based accelerator programming
I Contains directives, runtime routines and envionment variables
I Three levels parallelism: gang, worker and vector
I Handle memory traffic between the host and device
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Porting Applications on Multi-GPU

Porting Applications on Multi-GPU
Parallelization strategy

Figure: Multi-GPU Solution using Hybrid OpenMP and OpenACC
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Porting Applications on Multi-GPU

Porting Applications on Multi-GPU
Testbed

OpenACC compiler: HMPP (renamed as CAPS now)
GCC 4.4.7 as host compiler, -O3 optimization used

Table: Specification of experiment machine

Item Description

Architecture Intel Xeon x86 64
Cores 16
CPU frequency 2.27GHz
Main memory 32GB
GPU Model Tesla C2075
GPU cores 448
GPU clock rate 1.15GHz
GPU global & constant memory 5375MB & 64K
Shared memory per block 48KB
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Porting Applications on Multi-GPU

Porting Applications on Multi-GPU
S3D Thermodynamics Kernel

S3D is a solver that performs direct numerical simulation of turbulent
combustion.

The thermodynamics kernel is chosen for experiment.

Two kernels are independent, same input, differnet output

In single GPU, two kernels share the input

In multi-GPU version
I The input are duplicate

I Set the device number with runtime routine

I Use OpenMP sections to distribute workload
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Porting Applications on Multi-GPU

Porting Applications on Multi-GPU
Matrix Multiplication

Distribute one large kernel to multi-GPU

Use explicit OpenMP static loop scheduling

Each partitioned segment is executed on one GPU

Set device number based on the thread number

Only copy necessary data into each GPU
I Partial copy in OpenACC

Handle shared and private variables in OpenMP and OpenACC
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Porting Applications on Multi-GPU

Porting Applications on Multi-GPU
2D Heat Equation

Formula:
∂T

∂t
= α(

∂2T

∂x2
+
∂2T

∂y2
)
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Porting Applications on Multi-GPU

Porting Applications on Multi-GPU
2D Heat Equation

Different kernels have dependence

Host threads communicate and exchange data via shared data

Atomic or critical regions used to prevent data race

Barrier needed for synchronization

Figure: Multi-GPU Implementation Strategy for 2D Heat Equation
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Porting Applications on Multi-GPU

Porting Applications on Multi-GPU
S3D Thermodynamics Kernel
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Proposed Directives for Multiple Devices

Proposed Directives for Multiple Devices

#pragma acc multi device [clause [[,] clause]...] new-line
structured-block where clause is one of the following:

devices(scalar-integer-expression)
if(condition)
async[(scalar-integer-expression)]
copy(list)
copyin(list)
copyout(list)
create(list)
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Conclusion and Future Work

Conclusion and Future Work

Conclusions:
I It is feasible to program multi-GPU with OpenMP and OpenACC.

I Significant speedup can be achieved by using multi-GPU

I Proposed new directive to support multiple devices

Future Work:
I Implement proposed directive in OpenUH compiler

I Evaluate the implementation performance with PGI compiler
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