
Exploring Programming Multi-GPUs using OpenMP and
OpenACC-based Hybrid Model

Rengan Xu, Sunita Chandrasekaran
and Barbara Chapman

Department of Computer Science
University of Houston

PLC Workshop 2013

Presented by Rengan Xu PLC Workshop 2013 1 / 13



Outline

1 Motivation

2 Overview of OpenMP and OpenACC

3 Porting Applications on Multi-GPU

4 Proposed Directives for Multiple Devices

5 Conclusion and Future Work

Presented by Rengan Xu PLC Workshop 2013 2 / 13



Motivation

Motivation

GPUs have high compute capability in HPC, but programming these
devices is a challenge

Low-level models: CUDA, OpenCL
I Language extension
I Time-consuming to write and error-prone

High-level models: OpenACC, PGI, HMPP
I Directive based
I Hiding low-level details from the programmer
I Reduce learning curve and development time

Multi-GPU support:
I One node: OpenMP + OpenACC
I Multiple nodes: MPI + OpenACC

Presented by Rengan Xu PLC Workshop 2013 3 / 13



Overview of OpenMP and OpenACC

Overview of OpenMP and OpenACC

OpenMP
I Directive-based model for shared memory system
I Contains directives, runtime routines and environment variables
I Fork-join model
I Threads communicate via shared variables

OpenACC
I Standard for directive-based accelerator programming
I Contains directives, runtime routines and envionment variables
I Three levels parallelism: gang, worker and vector
I Handle memory traffic between the host and device

Presented by Rengan Xu PLC Workshop 2013 4 / 13



Porting Applications on Multi-GPU

Porting Applications on Multi-GPU
Parallelization strategy

Figure: Multi-GPU Solution using Hybrid OpenMP and OpenACC

Presented by Rengan Xu PLC Workshop 2013 5 / 13



Porting Applications on Multi-GPU

Porting Applications on Multi-GPU
Testbed

OpenACC compiler: HMPP (renamed as CAPS now)
GCC 4.4.7 as host compiler, -O3 optimization used

Table: Specification of experiment machine

Item Description

Architecture Intel Xeon x86 64
Cores 16
CPU frequency 2.27GHz
Main memory 32GB
GPU Model Tesla C2075
GPU cores 448
GPU clock rate 1.15GHz
GPU global & constant memory 5375MB & 64K
Shared memory per block 48KB

Presented by Rengan Xu PLC Workshop 2013 6 / 13



Porting Applications on Multi-GPU

Porting Applications on Multi-GPU
S3D Thermodynamics Kernel

S3D is a solver that performs direct numerical simulation of turbulent
combustion.

The thermodynamics kernel is chosen for experiment.

Two kernels are independent, same input, differnet output

In single GPU, two kernels share the input

In multi-GPU version
I The input are duplicate

I Set the device number with runtime routine

I Use OpenMP sections to distribute workload

Presented by Rengan Xu PLC Workshop 2013 7 / 13



Porting Applications on Multi-GPU

Porting Applications on Multi-GPU
Matrix Multiplication

Distribute one large kernel to multi-GPU

Use explicit OpenMP static loop scheduling

Each partitioned segment is executed on one GPU

Set device number based on the thread number

Only copy necessary data into each GPU
I Partial copy in OpenACC

Handle shared and private variables in OpenMP and OpenACC

Presented by Rengan Xu PLC Workshop 2013 8 / 13



Porting Applications on Multi-GPU

Porting Applications on Multi-GPU
2D Heat Equation

Formula:
∂T

∂t
= α(

∂2T

∂x2
+
∂2T

∂y2
)

Presented by Rengan Xu PLC Workshop 2013 9 / 13



Porting Applications on Multi-GPU

Porting Applications on Multi-GPU
2D Heat Equation

Different kernels have dependence

Host threads communicate and exchange data via shared data

Atomic or critical regions used to prevent data race

Barrier needed for synchronization

Figure: Multi-GPU Implementation Strategy for 2D Heat Equation

Presented by Rengan Xu PLC Workshop 2013 10 / 13



Porting Applications on Multi-GPU

Porting Applications on Multi-GPU
S3D Thermodynamics Kernel

 2

 4

 6

 8

 10

 12

1000 5000 10000 150000

S
p
e
e
d
u
p
 o

v
e
r 

O
p
e
n
M

P

Iteration Number

One GPU
Two GPUs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

1000 5000 10000 15000

S
p
e
e
d
u
p
 o

v
e
r 

O
p
e
n
M

P

Square Matrix Size

One GPU
Two GPUs

 0

 10

 20

 30

 40

 50

 60

512 1024 2048 4096

S
p
e
e
d
u
p
 o

v
e
r 

O
p
e
n
M

P

Dimension of Square Grid

One GPU
Two GPUs

Speedup of S3D, MM and Heat Equation compared to OpenMP (8
threads).

Presented by Rengan Xu PLC Workshop 2013 11 / 13



Proposed Directives for Multiple Devices

Proposed Directives for Multiple Devices

#pragma acc multi device [clause [[,] clause]...] new-line
structured-block where clause is one of the following:

devices(scalar-integer-expression)
if(condition)
async[(scalar-integer-expression)]
copy(list)
copyin(list)
copyout(list)
create(list)

Presented by Rengan Xu PLC Workshop 2013 12 / 13



Conclusion and Future Work

Conclusion and Future Work

Conclusions:
I It is feasible to program multi-GPU with OpenMP and OpenACC.

I Significant speedup can be achieved by using multi-GPU

I Proposed new directive to support multiple devices

Future Work:
I Implement proposed directive in OpenUH compiler

I Evaluate the implementation performance with PGI compiler

Presented by Rengan Xu PLC Workshop 2013 13 / 13


	Motivation
	Overview of OpenMP and OpenACC
	Porting Applications on Multi-GPU
	Proposed Directives for Multiple Devices
	Conclusion and Future Work

