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Motivation

Motivation

Reduction operations widely used in parallel loops

Reduction impacts the performance of parallel loops significantly

OpenACC reduction performance in commercial compilers varies and
not fully supported

No open-source implementation of OpenACC reduction
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Overview of OpenACC

Overview of OpenACC

The standard of directive-based programming
model for accelerator programming (GPU, APU, Xeon Phi, etc.)

Compute Directives

parallel: more control by user
kernels: more control by compiler

Three levels of parallelism

gang: coarse-grained
worker: fine-grained
vector: vector parallelism
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Overview of OpenACC

OpenUH - An Open Source OpenACC Compiler
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Mapping Parallel Loops onto GPGPU Architecture

Mapping Parallel Loops onto GPGPU Architecture

Figure : GPGPU Thread Block Hierarchy

gang: map to thread block

worker: Y-dimension of a thread block

vector: X-dimension of a thread block
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Parallelization of Reduction Operations for GPGPUs

Parallelization of Reduction Operations for GPGPUs
Reduction Properties

Reduction: Use binary operator to operate an input array and
generate a single output value

Reduction operator in OpenACC: +, *, &&, ||, &, |, ∧, max, min

Associativity:

a1 + a2 + a3

(a1 + a2) + a3

a1 + (a2 + a3)

Commutativity:

a1 + a2 + a3

a3 + a1 + a2

a2 + a3 + a1
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Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in vector

#pragma acc parallel copyin(input) copyout(temp)

{

#pragma acc loop gang

for(k=0; k<NK; k++){

#pragma acc loop worker

for(j=0; j<NJ; j++){

int i_sum = j;

#pragma acc loop vector reduction(+:i sum)

for(i=0; i<NI; i++)

i sum += input[k][j][i];

temp[k][j][0] = i_sum;

}

}

}
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Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in vector
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(b) Data and threads layout in
shared memory. Has bank conflict
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Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in vector (OpenUH way)
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(a) Data and threads layout in
global memory
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(b) Data and threads layout in
shared memory. NO bank conflict
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Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in vector

threads

iterations

Figure : Interleaved Log-step Reduction Algorithm

Optimizations:

Sequential addressing

Loop unrolling

Algorithm cascading
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Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in worker

#pragma acc parallel copyin(input) copyout(temp)

{

#pragma acc loop gang

for(k=0; k<NK; k++){

int j_sum = k;

#pragma acc loop worker reduction(+:j sum)

for(j=0; j<NJ; j++){

#pragma acc loop vector

for(i=0; i<NI; i++)

temp[k][j][i] = input[k][j][i];

j sum += temp[k][j][0];

}

temp[k][0][0] = j_sum;

}

}
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Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in worker
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(a) Data and threads layout in
global memory
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(b) Data and threads layout in
shared memory. Has bank conflict,
more shared memory.
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Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in worker (OpenUH way)
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(a) Data and threads layout in
global memory
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(b) Data and threads layout in
shared memory. NO bank conflict,
less shared memory.
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Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in gang

No built-in synchronization mechanisms to synchronize all
blocks/gangs

Create a temporary buffer in global memory with the size equal to the
number of blocks/gangs

Populate the buffer by all blocks/gangs

Launch another kernel to do the vector reduction within only one
block
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Parallelization of Reduction Operations for GPGPUs

Reduction across Multi-level Thread Parallelism (RMP)
RMP in different loops

#pragma acc parallel copyin(input) copyout(temp)

{

#pragma acc loop gang

for(k=0; k<NK; k++){

int j_sum = k;

#pragma acc loop worker reduction(+:j sum)

for(j=0; j<NJ; j++){

#pragma acc loop vector reduction(+:j sum)

for(i=0; i<NI; i++)

j sum += input[k][j]i];

}

temp[k] = j_sum;

}

}
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Parallelization of Reduction Operations for GPGPUs

Reduction across Multi-level Thread Parallelism (RMP)
RMP in different loops

CAPS compiler adds reduction clause to both j and i loops

OpenUH compiler adds reduction clause to only one place

The reduction is done ONCE by all threads in one block

Alternative way: vector reduction first, then worker reduction

Other possible combinations

gang worker
gang worker vector

If gang involved, use global memory and launch another reduction
kernel
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Parallelization of Reduction Operations for GPGPUs

Reduction across Multi-level Thread Parallelism (RMP)
RMP in the same loop

sum = 0;

#pragma acc parallel copyin(input)

{

#pragma acc loop gang worker vector reduction(+:sum)

for(i=0; i<NI; i++)

sum += input[i];

}

Create a buffer with size of all threads doing reduction

First perform partial reduction, then launch another kernel

Shared or global memory? - decided by gang
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Results

Results
Experimental Platform

Host: 24 Intel Xeon x86 64 cores, 32GB memory

Device: NVIDIA Kepler GPU (k20c), 5GB global memory

Software: CAPS 3.4.0, PGI 3.10, OpenUH, CUDA 5.5, GCC 4.4.7

Reduction data size: 1M

Evaluation benchmarks:

Self-written reduction testsuite
2D Heat Equation
Matrix Multiplication
Monte Carlo PI
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Results

Results
Result of reduction testsuite

F: test failed. CE: compilation error
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Results

Results
Performance comparison
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Results

Results
Performance comparison
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Conclusions

Conclusions

Present all possible reduction cases in OpenACC

Demonstrate efficient reduction parallelization strategies in an
open-source OpenACC compiler - OpenUH

OpenUH performance is competitive to commercial compilers

Similar strategies can be applied to OpenMP 4.0, ignore worker

OpenUH: http://web.cs.uh.edu/ openuh/
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