
Reduction Operations in Parallel Loops for GPGPUs

Rengan Xu, Xiaonan Tian, Yonghong Yan,
Sunita Chandrasekaran and Barbara Chapman

Department of Computer Science
University of Houston

August 30, 2014

Presented by Rengan Xu August 30, 2014 1 / 24

Outline

1 Motivation

2 Overview of OpenACC

3 Mapping Parallel Loops onto GPGPU Architecture

4 Parallelization of Reduction Operations for GPGPUs

5 Results

6 Conclusions

Presented by Rengan Xu August 30, 2014 2 / 24

Motivation

Motivation

Reduction operations widely used in parallel loops

Reduction impacts the performance of parallel loops significantly

OpenACC reduction performance in commercial compilers varies and
not fully supported

No open-source implementation of OpenACC reduction

Presented by Rengan Xu August 30, 2014 3 / 24

Overview of OpenACC

Overview of OpenACC

The standard of directive-based programming
model for accelerator programming (GPU, APU, Xeon Phi, etc.)

Compute Directives

parallel: more control by user
kernels: more control by compiler

Three levels of parallelism

gang: coarse-grained
worker: fine-grained
vector: vector parallelism

Presented by Rengan Xu August 30, 2014 4 / 24

Overview of OpenACC

OpenUH - An Open Source OpenACC Compiler

PRELOWER(Preprocess OpenACC)

LOWER
(Transformation of OpenACC)

CG(Code for IA-32,IA-64,X86_64)

OpenUH Compiler Infrastructure
Source Code

with OpenACC
Directives

GPU Code

NVCC
Compiler

PTX
Assembler

Loaded
Dynamically

CPU Binary

Runtime
Library Linker

Executable

FRONTENDS (C, OpenACC)

IPA(Inter Procedural Analyzer)

LNO(Loop Nest Optimizer)

WOPT(Global Scalar Optimizer)

WHIRL2CUDA

Presented by Rengan Xu August 30, 2014 5 / 24

Mapping Parallel Loops onto GPGPU Architecture

Mapping Parallel Loops onto GPGPU Architecture

Figure : GPGPU Thread Block Hierarchy

gang: map to thread block

worker: Y-dimension of a thread block

vector: X-dimension of a thread block

Presented by Rengan Xu August 30, 2014 6 / 24

Parallelization of Reduction Operations for GPGPUs

Parallelization of Reduction Operations for GPGPUs
Reduction Properties

Reduction: Use binary operator to operate an input array and
generate a single output value

Reduction operator in OpenACC: +, *, &&, ||, &, |, ∧, max, min

Associativity:

a1 + a2 + a3

(a1 + a2) + a3

a1 + (a2 + a3)

Commutativity:

a1 + a2 + a3

a3 + a1 + a2

a2 + a3 + a1

Presented by Rengan Xu August 30, 2014 7 / 24

Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in vector

#pragma acc parallel copyin(input) copyout(temp)

{

#pragma acc loop gang

for(k=0; k<NK; k++){

#pragma acc loop worker

for(j=0; j<NJ; j++){

int i_sum = j;

#pragma acc loop vector reduction(+:i sum)

for(i=0; i<NI; i++)

i sum += input[k][j][i];

temp[k][j][0] = i_sum;

}

}

}

Presented by Rengan Xu August 30, 2014 8 / 24

Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in vector

threadIdx.x

th
re

a
d

Id
x
.y

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

(a) Data and threads layout in
global memory

threadIdx.y

th
re

a
d

Id
x
.x

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 3,2 3,3

(b) Data and threads layout in
shared memory. Has bank conflict

Presented by Rengan Xu August 30, 2014 9 / 24

Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in vector (OpenUH way)

threadIdx.x

th
re

a
d

Id
x
.y

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

(a) Data and threads layout in
global memory

threadIdx.x

th
re

a
d

Id
x
.y

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

(b) Data and threads layout in
shared memory. NO bank conflict

Presented by Rengan Xu August 30, 2014 10 / 24

Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in vector

threads

iterations

Figure : Interleaved Log-step Reduction Algorithm

Optimizations:

Sequential addressing

Loop unrolling

Algorithm cascading

Presented by Rengan Xu August 30, 2014 11 / 24

Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in worker

#pragma acc parallel copyin(input) copyout(temp)

{

#pragma acc loop gang

for(k=0; k<NK; k++){

int j_sum = k;

#pragma acc loop worker reduction(+:j sum)

for(j=0; j<NJ; j++){

#pragma acc loop vector

for(i=0; i<NI; i++)

temp[k][j][i] = input[k][j][i];

j sum += temp[k][j][0];

}

temp[k][0][0] = j_sum;

}

}
Presented by Rengan Xu August 30, 2014 12 / 24

Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in worker

threadIdx.x

th
re

a
d

Id
x
.y

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

(a) Data and threads layout in
global memory

threadIdx.y

th
re

a
d

Id
x
.x

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

(b) Data and threads layout in
shared memory. Has bank conflict,
more shared memory.

Presented by Rengan Xu August 30, 2014 13 / 24

Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in worker (OpenUH way)

threadIdx.x

th
re

a
d

Id
x
.y

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

(a) Data and threads layout in
global memory

threadIdx.x

th
re

a
d

Id
x
.y

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

(b) Data and threads layout in
shared memory. NO bank conflict,
less shared memory.

Presented by Rengan Xu August 30, 2014 14 / 24

Parallelization of Reduction Operations for GPGPUs

Reduction in Single-level Thread Parallelism
Reduction only in gang

No built-in synchronization mechanisms to synchronize all
blocks/gangs

Create a temporary buffer in global memory with the size equal to the
number of blocks/gangs

Populate the buffer by all blocks/gangs

Launch another kernel to do the vector reduction within only one
block

Presented by Rengan Xu August 30, 2014 15 / 24

Parallelization of Reduction Operations for GPGPUs

Reduction across Multi-level Thread Parallelism (RMP)
RMP in different loops

#pragma acc parallel copyin(input) copyout(temp)

{

#pragma acc loop gang

for(k=0; k<NK; k++){

int j_sum = k;

#pragma acc loop worker reduction(+:j sum)

for(j=0; j<NJ; j++){

#pragma acc loop vector reduction(+:j sum)

for(i=0; i<NI; i++)

j sum += input[k][j]i];

}

temp[k] = j_sum;

}

}

Presented by Rengan Xu August 30, 2014 16 / 24

Parallelization of Reduction Operations for GPGPUs

Reduction across Multi-level Thread Parallelism (RMP)
RMP in different loops

CAPS compiler adds reduction clause to both j and i loops

OpenUH compiler adds reduction clause to only one place

The reduction is done ONCE by all threads in one block

Alternative way: vector reduction first, then worker reduction

Other possible combinations

gang worker
gang worker vector

If gang involved, use global memory and launch another reduction
kernel

Presented by Rengan Xu August 30, 2014 17 / 24

Parallelization of Reduction Operations for GPGPUs

Reduction across Multi-level Thread Parallelism (RMP)
RMP in the same loop

sum = 0;

#pragma acc parallel copyin(input)

{

#pragma acc loop gang worker vector reduction(+:sum)

for(i=0; i<NI; i++)

sum += input[i];

}

Create a buffer with size of all threads doing reduction

First perform partial reduction, then launch another kernel

Shared or global memory? - decided by gang

Presented by Rengan Xu August 30, 2014 18 / 24

Results

Results
Experimental Platform

Host: 24 Intel Xeon x86 64 cores, 32GB memory

Device: NVIDIA Kepler GPU (k20c), 5GB global memory

Software: CAPS 3.4.0, PGI 3.10, OpenUH, CUDA 5.5, GCC 4.4.7

Reduction data size: 1M

Evaluation benchmarks:

Self-written reduction testsuite
2D Heat Equation
Matrix Multiplication
Monte Carlo PI

Presented by Rengan Xu August 30, 2014 19 / 24

Results

Results
Result of reduction testsuite

F: test failed. CE: compilation error

Presented by Rengan Xu August 30, 2014 20 / 24

Results

Results
Performance comparison

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

gang worker vector gw wv gwv sgwv

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
s
)

OpenUH
PGI

CAPS

(a) Int [+]

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

gang worker vector gw wv gwv sgwv

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
s
)

OpenUH
PGI

CAPS

(b) Float [+]

 0

 100

 200

 300

 400

 500

 600

 700

gang worker vector gw wv gwv sgwv

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
s
)

OpenUH
PGI

CAPS

(c) Double [+]

Presented by Rengan Xu August 30, 2014 21 / 24

Results

Results
Performance comparison

 0

 100

 200

 300

 400

 500

 600

 700

 800

gang worker vector gw wv gwv sgwv

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
s
)

OpenUH
PGI

CAPS

(a) Int [*]

 0

 100

 200

 300

 400

 500

 600

 700

 800

gang worker vector gw wv gwv sgwv

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
s
)

OpenUH
PGI

CAPS

(b) Float [*]

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

gang worker vector gw wv gwv sgwv

E
x
e
c
u
ti

o
n
 T

im
e
 (

m
s
)

OpenUH
PGI

CAPS

(c) Double [*]

Presented by Rengan Xu August 30, 2014 22 / 24

Results

Results
Performance comparison

 0

 50

 100

 150

 200

 250

 300

 350

128x128 256x256 512x512

T
im

e
 (

s
)

Grid Size

OpenUH
PGI

CAPS

(a) 2D Heat Equation
[max]

 0

 50

 100

 150

 200

 250

 300

 350

2048 4096 8192

T
im

e
 (

s
)

Matrix Size

OpenUH
PGI

CAPS

(b) Matrix Multiplication
[+]

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

1GB 2GB 4GB

T
im

e
 (

m
s
)

Sampled Data Size

OpenUH
PGI

CAPS

(c) Monte Carlo PI [+]
Presented by Rengan Xu August 30, 2014 23 / 24

Conclusions

Conclusions

Present all possible reduction cases in OpenACC

Demonstrate efficient reduction parallelization strategies in an
open-source OpenACC compiler - OpenUH

OpenUH performance is competitive to commercial compilers

Similar strategies can be applied to OpenMP 4.0, ignore worker

OpenUH: http://web.cs.uh.edu/ openuh/

Presented by Rengan Xu August 30, 2014 24 / 24

	Motivation
	Overview of OpenACC
	Mapping Parallel Loops onto GPGPU Architecture
	Parallelization of Reduction Operations for GPGPUs
	Results
	Conclusions

