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SUMMARY

Manycore accelerators have the potential to significantly improve performance of scientific applications
when offloading computationally intensive program portions to accelerators. Directive-based high-level pro-
gramming models, such as OpenACC and OpenMP, are used to create applications for accelerators through
annotating regions of code meant for offloading. OpenACC is an emerging directive-based programming
model for programming accelerators that typically enable inexperienced programmers to achieve portable
and productive performance within applications. In this paper, we present our research in developing chal-
lenges and solutions when creating an open-source OpenACC compiler in an industrial framework (OpenUH
as a branch of Open64). We then discuss in detail techniques we developed for loop scheduling reduction
operations on general purpose GPUs. The compiler is evaluated with benchmarks from the NAS Parallel
Benchmarks suite and self-written micro-benchmarks for reduction operations. This implementation has
been designed to serve as a compiler infrastructure for researchers to explore advanced compiler techniques,
extend OpenACC to other programming models, and build performance tools used in conjunction with
OpenACC programs. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Heterogeneous architectures that are comprised of commodity Central Processing Units (CPUs)s
and computational accelerators, such as General Purpose Graphics Processing Units (GPGPUs),
have been increasingly adopted in large-scale supercomputers, workstations, and desktops for
engineering and scientific applications. These accelerators provide additional massively parallel
computing capabilities to users while preserving the flexibility provided by CPUs for different
workloads. However, effectively exploiting GPUs’ full potential may become difficult due to the pro-
gramming challenges faced when mapping computational algorithms to hybrid and heterogeneous
architectures.

Programming models, such as CUDA [1] and OpenCL [2], for GPGPUs offer programming inter-
faces with execution models that closely match GPGPU architectures. Effectively utilizing these
interfaces to create highly optimized applications requires programmers to thoroughly understand
the underlying architectures. In addition, they must be able to significantly change and adapt pro-
gram structures and algorithms. This affects both productivity and performance. An alternative
approach would be to use high-level directive-based programming models to achieve the same goal,
for example, HMPP [3], OpenACC [4], and OpenMP [5]. These models allow the user to insert
both directives and runtime calls into existing source code, indicating that a portion of the Fortran or

*Correspondence to: Xiaonan Tian, Department of Computer Science, University of Houston, Houston, TX, 77204, USA.
†E-mail: xtian2@uh.edu

Copyright © 2015 John Wiley & Sons, Ltd.



X. TIAN ET AL.

C/C++ code should execute on accelerators. Using directives, programmers may give hints to com-
pilers to perform certain transformations and optimizations on the annotated code regions. The user
can insert directives incrementally to parallelize and optimize the application, enabling a productive
migration path for legacy code.

In this paper, we present our experiences in constructing an OpenACC compiler in the OpenUH
open-source compiler framework [6]. Our goals are to enable a broader community participation
and dialog related to this programming model and the compiler techniques that support it. We
also design and specify this implementation to serve as compiler infrastructure for researchers that
are interested in improving OpenACC, extending the OpenACC model to other programming lan-
guages, and/or building tools that support the development of OpenACC programs. To the best of
our knowledge, we are the first to design and implement an open-source OpenACC compiler to
support comprehensive reduction algorithms and read-only data cache (RODC) optimization.

We also propose the design and parallelization of reduction operations in parallel loops for
GPGPU accelerators. Using OpenACC as a high-level directive-based programming model, we dis-
cuss how reduction operations are parallelized when appearing in each level of the loop nest and
thread hierarchy, for example, the outer loop with gang (coarse-grain), mid-level with worker
(fine-grain), and inner level with vector parallelism. Then the manner in which mapping of the
loops and parallelized reduction to single- or multiple-level parallelism of GPGPU architectures is
further detailed. We implemented these algorithms in OpenUH [7] and created a test suite that pro-
vides different use cases of reduction operations for performance evaluation. We then compare our
results for these cases with two other commercial OpenACC compilers. OpenUH passed all reduc-
tion usage cases and delivered competitive performance to other compilers. OpenUH even passed
multiple tests where the commercial OpenACC compilers failed.

This paper makes the following contributions:

� We deliver an open-source OpenACC research compiler based on the robust Open64 industry-
level compiler framework.

Thus, the experiences could be applicable to other compiler implementation efforts. The
OpenUH compiler adopts a source-to-source approach and generates readable CUDA source
code for GPGPUs. This gives users an opportunity to understand the applications of loop map-
ping mechanisms, which can be used to further manually optimize the code, if need be. It also
allows the user to leverage the advanced optimization features offered by CUDA in the back
end.
� We propose a rich set of loop scheduling strategies within the compiler to efficiently distribute

kernels or parallel loops to the threading architectures of GPGPU accelerators. Our findings
provide guidance for users to adopt suitable loop schedules depending on the application
requirements.
� We present the compile-time read-only array/pointer detection for the read-only cache opti-

mization in the latest Nvidia Kepler architecture.
� We provide a comprehensive solution for reduction operations by covering all reduction

operator and operand data types.
While evaluating our complete implementation strategies for reduction operations in

OpenUH compiler against other vendor compilers, we observed that not all vendor compilers
provide a thorough successful solution for this operation.
� We evaluate our novel strategies and its implementations in OpenUH OpenACC compiler

using NAS parallel benchmarks (NPBs) [8]. Then comparisons against CUDA code version [9]
and PGI [10] compiler are presented. The results show that OpenUH generates competitive
performance to CUDA and modest performance gains over PGI.

The organization of this paper is as follows: Section 3 provides an overview of the OpenACC
model and compiler design. Section 4 demonstrates in detail how to transform sequential loops
into CUDA code for massively parallel GPGPU architecture. Section 5 discusses the parallelization
strategies for reduction operations in parallel loops. Section 6 explains the compile-time read-only
data optimization for offload regions. Performance results are discussed in Section 7. Section 8
highlights the related work in this area. We then conclude our work in Section 9.
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2. BACKGROUND

2.1. Nvidia GPGPU architecture

The processor architecture of GPUs and CPUs are fundamentally different. In this paper, GPU is
interchangeably referred to as GPGPU, or general purpose GPU. Nvidia’s GPU consists of multiple
streaming multiprocessors (SMs), and each SM consists of many scalar processors (referred to as
cores). In the latest Kepler architecture, SM is updated to the next-generation streaming multipro-
cessor, or SMX. Each GPU supports the concurrent executions of hundreds to thousands of threads
following the single-program multiple-data programming model, and each thread is executed by a
core. The smallest scheduling and execution unit is called a warp, which has 32 threads. Warps of
threads are grouped together into a thread block, and blocks are grouped into a grid. Figure 1(a) [11]
shows how the blocks can be organized into a two dimensional grid of thread blocks. Table I pro-
vides CUDA terminology for thread, block, and grid topology information. Each thread has its own
unique thread ID, which can be identified by threadIdx.x, threadIdx.y, and threadIdx.z in each block.
Thread blocks cannot synchronize with each other, while the threads within a block can do so.

Figure 1(b) gives an overview of the memory hierarchy in Nvidia GPUs. The GPU has a global
memory space that is accessible by all threads in the grid, and this is the space that the CPU memory
can communicate with. Shared memory is allocated per thread block, whose memory size can be
configured by the programmer. Because the shared memory is on-chip, the latency is much lower
than global memory. The L1 cache in the Kepler architecture is reserved only for local memory
accesses, such as register spilling and stack data. Global loads are cached in L2 only. Read-only data
cache was introduced in the latest Kepler architecture. Each SMX has a 48 KB read-only data cache.
Each core in SMX accesses data via read-only cache when the data is read-only for the lifetime of the
CUDA kernel. Our compiler, OpenUH, uses the on-chip shared memory for performing OpenACC
reduction operations, discussed in Section 5. OpenUH also includes OpenACC optimizations for
exploiting the GPU cache, discussed in Section 6.

The use of GPGPU programming for achieving greater performance has been made possible by
programming models/languages such as CUDA and OpenCL. However, the challenge is that the

Figure 1. Nvidia Kepler general purpose GPU (GPGPU) architecture. (a) Nvidia GPGPU thread block
hierarchy; (b) Nvidia GPGPU memory hierarchy.

Table I. CUDA terms.

Term Description

threadIdx.x(y/z) Thread index in x(y/z) dimension of a thread block
blockDim.x(y/z) Number of threads in x(y/z) dimension of a thread block
blockIdx.x(y/z) Block index in x(y/z) dimension of the grid
gridDim.x(y/z) Number of blocks in x(y/z) dimension of the grid
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programmers are required to thoroughly understand the GPUs. These models also require rewrit-
ing of significant portions of the application source code. This is time-consuming and error-prone.
OpenACC, an emerging high-level and directive-based parallel programming standard, addresses
some of these challenges by providing a more viable approach for improving the productivity and
simplifying the process of porting or creating applications for using accelerators.

2.2. OpenACC programming model

OpenACC is a high-level programming model that can be used to port High Performance Computing
(HPC) applications to different types of accelerators such as Nvidia GPUs, AMD GPUs and
Accelerated Processing Units (APUs), and Intel Xeon Phi. It provides directives, runtime routines,
and environment variables as its programming interfaces. The execution model assumes that the
main program runs on the host, while the compute-intensive regions of the program are offloaded
to the attached accelerator. The accelerator and the host may have separate memories, and the data
movement between them may be controlled explicitly. OpenACC provides a rich set of data transfer
directives, clauses, and runtime calls as part of its standard. To minimize the performance degrada-
tion due to data transfer latency, OpenACC also allows asynchronous data transfer and asynchronous
computation with the CPU code, thus enabling overlapping data movement and computation.

OpenACC uses the parallel or kernels constructs to define a compute region that will be
executed in parallel on the accelerator device. The loop construct is used to specify the distribu-
tion of iterations. The purpose of using parallel and kernels is that parallel construct
provides more control to the user while the kernels provides more control to the compiler. The
reduction clause is allowed on a loop construct. The execution model of OpenACC assumes
that the main program runs on the host, while the compute-intensive regions of the main program
are offloaded to the attached accelerator. In the memory model, usually, the accelerator and the
host CPU consist of separate memory addresses to prevent conflicts between CPU and accelerators.
OpenACC 1.0 discusses different types of data transfer clauses. Some additional data directives and
runtime routines to control the unstructured data lifetime have been added in the 2.0 specification.

We will briefly distinguish between the kernel in CUDA and kernels directive in OpenACC.
CUDA kernel identifies a kernel function. The OpenACC kernels construct instructs the com-
piler to analyze the code and determine which code regions may be executed as kernels on the
accelerator. We denote both parallel and kernels regions as ‘offload’ region in this paper.

Figure 2. OpenACC vector addition example. (a) OpenACC code; (b) translated CUDA kernel; (c) translated
CPU code.
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Figure 2(a) shows a simple example of OpenACC vector addition. The acc data directive,
which identifies a data region, will create a and b in device memory and then copy the respective
data into device memory at the beginning of the data region. The array c will be copied out after
finishing the code segment of the region. The acc kernels directive means that the following
block should be executed on the device. The acc loop directive results in the distribution of loop
iterations among the threads on the device.

3. THE DESIGN OF OPENACC COMPILER

The creation of an OpenACC compiler requires innovative research solutions to meet the challenges
of mapping high-level loop iterations to low-level threading architectures of the hardware. It also
requires support from the runtime to handle data movement and scheduling of computation on the
accelerators. In this work, we have used OpenUH, a branch of the open-source Open64 compiler
suite, for our compiler framework. The components of the OpenUH framework is shown in Figure 3.
The compiler is comprised of several modules, with each module operating on a level of the com-
piler’s multi-level Intermediate Representation (IR), WHIRL. From the top, each module translates
the current level of WHIRL to a lower level.

We have identified the following challenges that must be addressed to create an effective imple-
mentation of the OpenACC directives. First, it is very important that we create an extensible parser
and IR system to facilitate the addition of new features as and when the language evolves and to
support aggressive compiler optimizations. Fortunately, the extensibility of OpenUH framework
and WHIRL IR allowed us to add these extensions without too much difficulty. Second, we need
to design and implement an effective strategy to distribute the loop nest across the GPGPU thread
hierarchy. We discuss our solutions in more detail in Section 4.

As shown in Figure 3, we use a source-to-source translation technique to translate OpenACC
offload region into CUDA code. OpenUH directly generates an object code for �86 host CPU.
Consider the OpenACC code in Figure 2(a) as an example. Figure 2(b) and (c) shows the translated
CUDA kernel and the equivalent host CPU pseudocode. We have created a WHIRL2CUDA tool that
can produce NVIDIA CUDA kernels after the transformation of offloading code regions. Compared
with binary code generation, the source-to-source approach provides much more flexibility to users.
It allows users to leverage the advanced optimization features in the back-end compilation step
performed by the CUDA compiler nvcc. It also gives users some options to manually optimize the
generated CUDA code for further performance improvement.

Figure 3. OpenUH compiler framework for OpenACC.
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4. LOOP TRANSFORMATION

Programmers usually would want to offload computationally intensive loop nests for execution on
massively parallel accelerator devices. One of the major challenges of compiler transformation is
to create a uniform loop distribution mechanism that can effectively map loop nest iterations across
the GPU parallel system. As an example, Nvidia GPGPUs has two levels of parallelism: block
level and thread level. Blocks can be organized as multi-dimensional within a grid, and threads in
a block can also be multi-dimensional. Distributing iterations of multi-level loop nests across these
multi-dimensional blocks and threads is a nontrivial task.

OpenACC provides three levels of parallelism for mapping loop iterations onto the accelera-
tors’ thread structures: ‘gang’ for coarse-grain parallelism, ‘worker’ for fine-grain parallelism, and
‘vector’ for vector parallelism. The OpenACC standard allows the compiler some flexibility of inter-
pretation and code generation for these levels. For Nvidia GPU, some compilers map each gang to
a thread block, vector to threads in a block, and ignore worker [10]; other compilers map gang to
the x-dimension of a grid block, worker to the y-dimension of a thread block, and vector to the
x-dimension of a thread block [12]. There are also compilers that map each gang to a thread block,
worker to warp, and vector to Single Instruction Multiple Threads (SIMT) group of threads [13].

In our design, we propose two different loop scheduling strategies for an OpenACC offload
region: kernels and parallel loop scheduling. The difference between parallel and kernels loop
scheduling is that we provide more options for the compiler to fine-tuning scheduling on GPGPUs
in kernels region. Both types of loop scheduling can be used for a single loop, double-nested loop,
and triple-nested loop as shown in Figure 4. If the depth of a nested loop is more than 3, the Ope-
nACC collapse clause can be used to increase the parallelism. In Figure 4, OpenACC loops do
not need to specify loop scheduling clauses such as gang, worker, and vector. We discuss these cases
in detail in the following two sections.

4.1. Parallel loop scheduling

In the OpenACC specification, loop scheduling cannot use nested gang, nested worker, and nested
vector; that is, a gang can only contain worker and vector, and a worker can only include vec-
tor. The programmer can create several gangs, and a single gang may contain several workers,
and a single worker may contain several vector threads. The iterations of a loop can be executed
in parallel by distributing the iterations among one or more levels of parallelism provided by the
GPGPU device.

Table II shows the CUDA terminology that we use in our OpenACC implementation. In OpenUH,
gang maps to a thread block, worker maps to the y-dimension of a thread block, and vector

Figure 4. OpenACC loop. (a) Single loop; (b) double-nested loop; (c) triple-nested loop.

Table II. OpenACC and CUDA terminology mapping in parallel.

OpenACC clause CUDA Description

gang block Loop iterations are distributed across blocks in grid.
worker y-dim threads Loop iterations are distributed into y-dimension threads in a block.
vector x-dim threads Loop iterations are distributed into x-dimension threads in a block.
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Figure 5. Single loop transformation in parallel region. (a) Scheduling-gwv; (b) scheduling-gwv in CUDA.
g, gang; w, worker; v, vector.

Figure 6. Double-nested and triple-nested loop transformation in parallel region. The scheduling name
indicates which loop scheduling clauses are used. For example, scheduling-gw-v means the outer loop is dis-
tributed across gang and worker, and inner loop is carried by vector in a double-nested loop. The kernels loop
scheduling names follow the same format. (a1) Scheduling-g-wv; (a2) scheduling-gw-v; (a3) scheduling-g-
w-v; (b1) scheduling-g-wv in CUDA; (b2) scheduling-gw-v in CUDA; (b3) scheduling-g-w-v in CUDA. g,

gang; w, worker; v, vector.

maps to the x-dimension of a thread block. Based on these definitions, the implementation details
for the loop nest is shown in Figures 5 and 6. This mapping strictly follows the OpenACC standard.

In our implementation, the threads in each loop level increase along with their own stride size, so
that each thread processes multiple elements of the input data. This solves the issue of there being a
limited number of threads available in the hardware platform. Our implementation is designed in a
way that is independent of the number of threads used in each loop level.

In the loop nest example, we assume that all the iterations are independent, but most of the time,
the loop nest may contain a reduction operation, and the reduction may appear anywhere in the loop
nest. In Section 5, we will discuss such cases and how they are parallelized in OpenUH.

The limitation of the parallel loop mapping is that the total threads (the number of workers multi-
plied by the number of vectors) must be less than or equal to 1024 in one gang (block). The number
1024 here is the maximum allowed number of threads in one block in an Nvidia GPU; therefore,
the scalability becomes a critical issue. In Figure 7(a), the maximum number threads we can cre-
ate in OpenACC is 20*1024. We could overcome this limitation by utilizing the multi-dimensional
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Figure 7. Parallel loop scheduling limitation and its solution. (a) Scheduling-g-wv in parallel region;
(b) scheduling-g-gv in kernels region. g, gang; w, worker; v, vector.

topology of the thread block and grid. The solution is to create some extension in kernels loop
scheduling to create more threads, in order to increase the thread-level parallelism. Figure 7(b)
is one of the kernels loop schedules that can solve the scalability issue because it can create
20*100*1024 threads.

4.2. Kernels loop scheduling

In order to take advantage of multi-dimensional grid and thread block in Nvidia GPGPUs, we pro-
pose eight loop scheduling strategies to efficiently distribute loop iterations in an OpenACC kernels
region. However, the kernels loop scheduling strategies are not limited to these eight methods; there
could be more ways to take advantage of the massively parallel threading that the GPGPU offers.
Table III shows the mapping terminology we used from OpenACC to CUDA for kernels directives.

Single Loop Loop iterations are distributed among gangs and vectors. Both gang and vec-
tor are one-dimensional. Each thread takes one iteration at a time and then moves ahead with
blockDim.x * gridDim.x stride. Figure 8 show the OpenACC and translated CUDA loop for this
single loop.

Double-Nested Loop Notations: g, gang; v, vector. There are four different double-nested loop
cases, and the mapping algorithms are different for these. Figure 9 shows the loop scheduling for
each case.

� Scheduling-g-v (in Figure 9(a1)): both gang and vector are one-dimensional. The outer loop is
distributed across the gang, and the inner loop is executed among threads in each gang. The
thread stride in i and j axis are gridDim.x and blockDim.x. The translated CUDA kernel is
shown in Figure 9(b1).

Table III. OpenACC and CUDA terminology mapping in kernels.

OpenACC clause CUDA Description

gang block If there is an integer expression for this gang clause,
(integer expression) it defines the number of blocks in one dimension of grid.

vector thread If there is an integer expression for this vector clause,
(integer expression) it defines the number of threads in one dimension of block.

Figure 8. Single loop transformation in kernels region. (a) Scheduling-gv; (b) scheduling-gv in CUDA. g,
gang; v, vector.
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Figure 9. Translation of double-nested loops in kernels region. (a1) Scheduling-g-v; (a2) scheduling-gv-v;
(b1) scheduling-g-v in CUDA; (b2) scheduling-gv-v in CUDA; (a3) scheduling-g-gv; (a4) scheduling-gv-gv;

(b3) scheduling-g-gv in CUDA; (b4) scheduling-gv-gv in CUDA. g, gang; v, vector.

� Scheduling-gv-v (in Figure 9(a2)): one-dimensional gang, two-dimensional vector. After the
mapping, the outer loop thread stride is gridDim.x�blockDim.y, and the inner loop thread stride
is blockDim.x. The translated CUDA kernel is shown in Figure 9(b2).
� Scheduling-g-gv (in Figure 9(a3)): two-dimensional gang an d one-dimensional vector. After

the mapping, the outer loop thread stride is gridDim.y, and the inner loop thread stride is
gridDim.x � blockDim.x. The translated CUDA kernel is shown in Figure 9(b3).
� Scheduling-gv-gv (in Figure 9(a4)): both gang and vector are two-dimensional. After the map-

ping, the outer loop thread stride is gridDim.y � blockDim.y, and the inner loop thread stride is
gridDim.x � blockDim.x. The translated CUDA kernel is shown in Figure 9(b4).

Triple-Nested Loop For the three different triple-nested loops, Figure 10 shows the mapping.

� Scheduling-g-gv-v (in Figure 10(a1)): both gang and vector are two-dimensional. After the
mapping, the thread stride in i , j , and k loop are griddim.x, griddim.y � blockDim.y, and
blockDim.x. The translated CUDA kernel is shown in Figure 10(b1).
� Scheduling-v-gv-gv (in Figure 10(a2)): two-dimensional gang and three-dimensional

vector. After the mapping, the thread stride in i , j , and k loops are blockDim.z, blockDim.y �
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Figure 10. Translation of triple-nested loops in kernels region. (a1) Scheduling-g-gv-v; (a2) scheduling-v-
gv-gv; (a3) scheduling-gv-gv-gv; (b1) scheduling-g-gv-v in CUDA; (b2) scheduling-v-gv-gv in CUDA; (b3)

scheduling-gv-gv-gv in CUDA. g, gang; v, vector.

griddim.y, and blockDim.x � griddim.x, respectively. The translated CUDA kernel is shown in
Figure 10(b2).
� Scheduling-gv-gv-gv (in Figure 10(a3)): both gang and vector are three-dimensional. After

the mapping, the thread stride in i , j , and k axes are griddim.z � blockDim.z, griddim.y �
blockDim.y, and gridDim.x�blockDim.x, respectively. The translated CUDA kernel is shown in
Figure 10 (b3).

The loop scheduling strategies proposed for kernels regions are not valid in OpenACC. However,
the intention of the kernels construct is to let the compiler analyze and automatically parallelize
loops, as well as select the best loop scheduling strategy. So far, OpenUH requires the user to explic-
itly specify these loop schedules, but we are planning to automate this work in the compiler so that
the chosen loop scheduling is transparent to the user and the source code also follows the Ope-
nACC standard. Another issue lies with the reduction operation in kernels computation regions. If
the reduction is used in the inner loop of scheduling-gv-gv, it would require synchronization across
thread blocks, and such synchronization is not supported in Nvidia GPGPUs. Hence, reduction
is not supported in a kernels computation region. The work-around is to use the reduction clause
in a parallel region.

5. PARALLELIZATION OF REDUCTION OPERATIONS FOR GPGPUS

The reduction operation applied to a parallel loop uses a binary operator to operate on an input array
and generates a single output value for that array. Each thread has its own local copy of a segment
of the input array when the loop is distributed among threads. The operation that consolidates the
results from the thread-local copies of the segments using the reduction operation is the topic that
we addressed in [14]. The approach to performing parallel reductions depends on how the loop nests
are mapped to the GPGPU’s thread hierarchy. Moreover, the reduction operation always implies a
barrier synchronization. This may introduce runtime overhead; hence, we need to be cautious to
only include the synchronization when necessary.
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5.1. Reduction in single-level thread parallelism

The loop nest where a reduction operation is applied could be mapped to one or multiple levels in
the thread hierarchy – gang, worker, and vector. We will first discuss the case where the reduction
operation appears in only one level of the parallelism.

5.1.1. Reduction only in vector. Figure 11(a) shows an example of reduction occurring only in
vector, where the worker and gang loops (k and j) can be executed in parallel while the vector loop
(i) needs to perform the reduction. To parallelize vector reduction, Figure 12(a) shows the data,
worker, and vector thread layout in one gang before performing the reduction operation. Each row is
one worker that includes multiple vector threads. Because vector reduction happens in each worker,
each row needs to do the reduction, and finally, each worker should have one reduction result.
In this example, there are four workers, and each worker has four vector threads, so four vector
reduction results should be generated. Because NVIDIA GPUs provide very low latency shared
memory access and the reduction needs to fetch the data in multiple iterations, the reduction can
be moved to the shared memory to reduce memory access latency. The parallelization strategy for
vector reduction is shown in Figure 12(b). In this implementation, each vector thread first creates a
private variable and does the partial reduction itself, and then all the partial private reduction values
are moved into the shared memory. Notice that the data layout and thread layout in the shared
memory still remain the same as that in the global memory. The reason that we retain the data and
thread layouts is that the shared memory is composed of multiple banks (32 banks in Kepler), and
this implementation can avoid bank conflict issues. A bank conflict occurs when threads in a warp

Figure 11. Reduction in single-level thread parallelism example. (a) Reduction in vector; (b) reduction in
worker; (c) reduction in gang.

(a) Data and threads layout in
global memory

(b) Data and threads layout in
shared memory for vector reduction

(c) Data and threads layout in
shared memory for worker reduction

Figure 12. Parallelization comparison for vector and worker reduction. (a) includes the original thread layout
in a thread block. In (b), each group of vector threads works on row data and the reduction results are stored
in the first column. The data inside the dashed rectangle are distributed into different shared memory banks
to avoid bank conflict issues. In (c), four worker values are only in the first row, and the following three row

threads are inactive; the final reduction is stored in the first element of the first row.
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Figure 13. Interleaved log-step reduction. Synchronization is inserted after each iteration and before the next
iteration. Green represents active threads while gray represents inactive threads in each iteration.

request different words (one word is 64-bit in Kepler) from the same bank in a single request. In our
vector reduction implementation, the vector reduction happens in each row, and the final reduction
values are stored in the first column of the shared memory. Therefore, the threads performing the
reduction request data from multiple banks rather than a single bank, thus avoiding the bank conflict.
The reduction algorithm used by the vector threads in shared memory is called interleaved log-step
reduction [15], which is shown in Figure 13. Our implementation of this algorithm uses sequential
addressing, loop unrolling, and a algorithm cascading optimization as discussed in [15]. A point
to note is that the initial value of the variable that needs to be reduced may have a different value
for the private copy of that variable. For example, the initial value of i_sum in Figure 11(a) is j,
but the initial value for the private copy of the variable i_sum_priv for each thread is 0. In most of
implementations, the initial value is processed after the vector reduction operation is finished. For
instance, the initial value is summed for ‘+’ reduction or multiplied for ‘*’ reduction.

5.1.2. Reduction only in worker. Figure 11(b) shows an example of reduction occurring only in
worker, where the gang and vector loops (k and i) can be executed in parallel while the worker
loop (j loop) has to do the reduction. The parallelization strategy for worker reduction is shown in
Figure 12(c). In this implementation, each worker creates a private variable and does the private
partial reduction first; then the first vector thread of each worker stores the partial reduction into
the shared memory; finally, all the original vector threads of workers use the interleaved log-step
reduction algorithm to generate the final reduction result. Using this approach requires less threads
and less shared memory so that we can leave more shared memory for other computations. For
instance, in the example of Figure 12(c), only four threads are required to perform the reduction,
and only the first row of the shared memory is occupied. Also, the advantage of this approach is
that the vector threads are warp threads, so we do not need synchronization in the last six iterations
when only the last warp threads need to perform the reduction.

5.1.3. Reduction only in gang. The example of reduction only in gang is shown in Figure 11(c),
where the inner worker and vector loops (j and i) are executed in parallel while the gang loop (k
loop) has a reduction. Because we map each gang to each thread block in CUDA, and there is no
efficient synchronization mechanism to synchronize all thread blocks, the strategy of OpenUH is to
(1) create a temporary buffer with the size equal to the number of gangs, (2) have each block write
its partial reduction into the specific entry of the buffer, and (3) another kernel (the same reduction
kernel as the one in vector addition) is launched to do the reduction within only one block.

We mentioned partial reduction in all three cases of vector, worker, and gang reduction. OpenUH
uses a sliding window technique to implement all of these partial reductions. Consider gang reduc-
tion for example. OpenUH considers all gangs as a sliding window, and this window slides through
the iteration space. An alternative blocking algorithm is to divide the iterations among all gangs
equally, then each gang works on the assigned iteration chunk. Essentially, there is no difference
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between these two algorithms in gang partial reduction, but the sliding window technique is superior
than a blocking algorithm in vector partial reduction because it can enable memory coalescing.
Memory coalescing is impossible in worker and gang partial reductions, but we still use the window
sliding technique in both cases in order to make the implementation consistent.

5.2. Reduction across multi-level thread parallelism

Section 5.1 focused on reduction occurring only in single-level parallelism. Although we discuss
each of the cases individually, there could be several combinations of these cases, so some or all of
these single cases could be grouped together. For instance, in a triple-nested loop the outermost, the
middle, and the innermost loops use gang, worker, and vector reduction, respectively. Reduction can
also occur on different variables within different levels of parallelism. Multiple levels of parallelism
can occur within different loops or within the same loop. Next, we will discuss all these possibilities
in detail.

5.2.1. Reduction across multi-level thread parallelism in different loops. Figure 14(a) shows an
example of the same reduction spanning across different levels of parallelism in different loops. In
this example, the j_sum needs to perform reduction on both the worker and vector loops. The CAPS
compiler adds the reduction clause to both the worker and vector loops, failing which an incorrect
result is generated. This is also a favorable step because reduction occurs in both worker and vector
level parallelism. The OpenUH compiler, however, can automatically detect the position of the
reduction variable, and the user just needs to add the reduction clause to the loop that is the closest
to the next use of that reduction variable. In this case, j_sum is assigned to temp[k] after the worker
loop, so we add the reduction in the worker loop. If j_sum is used after the vector loop and inside
the worker loop, then we add the reduction clause in the vector loop. The CAPS compiler, at times,
also just needs to add the reduction clause to the outermost loop, but only when all the inner loops
are sequential. With respect to the implementation, OpenUH creates a buffer with the size equal
to the number of all threads that needs to perform the reduction (workers * vector threads in this
example), and the buffer is stored in the shared memory. Each thread writes its own partial reduction
result into this buffer and continues the reduction operation in the shared memory. The multi-level
parallelism can be realized in three ways: gang & worker, gang & worker & vector, and worker
& vector. For the former two cases, a temporary buffer is created, and all threads performing the
reduction operation write their own private reduction into this buffer based on the unique ID of each
thread. The buffer is allocated in the global memory because the reduction spans across gangs, and
all gangs do not have the mechanism to synchronize. Another kernel that takes this temporary buffer
as input is launched, and this kernel performs the vector reduction to generate the final reduction
value. Note that the reduction cannot span across gang & vector without going through the worker.

5.2.2. Reduction across multi-level thread parallelism in the same loop. Figure 14(b) shows an
example of a reduction across multi-level parallelism in the same loop. In the implementation,
OpenUH creates a buffer with the size equal to the size of the all threads that need to perform the
reduction (gangs * workers * vector threads in this example), then each thread does its own partial

Figure 14. Examples of reduction across multi-level thread parallelism (RMP). (a) Example of RMP in the
different loop; (b) example of RMP in the same loop.
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reduction, and finally, another kernel is launched to do the reduction for all values in the buffer.
Again, whether the buffer is stored in global memory or shared memory depends on whether the
reduction happens using gang parallelism. As long as gang parallelism is involved, the buffer must
be in global memory.

5.3. Special reduction considerations

Apart from the cases listed in Sections 5.1 and 5.2, there are some other special reduction cases. One
of them is that the same reduction clause includes multiple reduction variables, and these variables
have different data types (e.g., int and float). In this case, one approach is to create a large shared
memory space, and different sections of the shared memory are reserved for different reduction data
types. This implementation may face the shared memory size issue because too many reduction
variables may require more shared memory than the hardware limit. OpenUH, however, creates a
shared memory space with the size being the same as the largest required shared memory for a
particular data type. For instance, if there is an ‘int’ type reduction and a ‘double’ type reduction in
the same reduction clause, then we need to create a shared memory for the double type reduction
because the required int type reduction memory space is smaller than the required shared memory
for double type reduction, and these two reductions can share the same shared memory space.

We implemented the different cases of reduction operations in both global and shared memory.
Although the implementation in global memory is similar to that of the shared memory’s, the main
difference is the memory access latency. We created an implementation in the global memory pri-
marily because the shared memory is sometimes reserved for other computation; therefore, there is
not enough memory space for performing reduction operations. Take the blocked matrix multipli-
cation for example. The matrix is divided into multiple blocks, and the computation for each block
occurs inside the shared memory. Therefore, if a reduction has to happen at the same time, then we
would need to move the reduction operation to the global memory.

6. READ-ONLY DATA CACHE OPTIMIZATION

The read-only data cache (RODC) was introduced in the latest Nvidia Kepler architecture. For each
SMX, the 48 KB RODC is available for the lifetime of a CUDA kernel. The RODC has higher
bandwidth and lower latency than the read-write cache and supports full-speed unaligned memory
access patterns. However, the user cannot control how the hardware actually caches the read-only
data. In the NVIDIA CUDA compiler, the user can give hints by using the ‘const’ modifier to
designate certain read-only data and the ‘__restrict__’ keyword to indicate no aliasing. The CUDA
compiler will generate code to help the hardware to cache the corresponding data into RODC. We
propose and implement in OpenUH two ways to effectively take advantage of RODC in high-level
programming models.

Figure 15 gives an example of how the proposed clause is used and the translated CUDA code.
First, a new data clause is introduced to explicitly identify the read-only data by users. We named it

Figure 15. Read-only data cache optimization. (a) OpenACC code; (b) translated CUDA kernel.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2015)
DOI: 10.1002/cpe



COMPILER TRANSFORMATION OF NESTED LOOPS FOR GPGPUS

as ‘const’, which is only valid in the kernels/parallel construct. Users can determine which offload
region needs the ‘const’ clause. Second, the OpenACC compiler can do some analysis for the
offloaded region, check if an array/pointer buffer will be written, and then generate a read-only
array/pointer variables list. In this scenario, aliasing can prevent the compiler from making the opti-
mal decision. However, such aliasing issues can be easily solved by using the OpenACC loop clause
‘independent’, which tells the compiler that iterations are independent from each other. This is a
better solution compared with the new ‘const’ clause solution as the code still follows the OpenACC
standard and the RODC optimization is used by the compiler automatically. Because this optimiza-
tion is specific to the Nvidia Kepler architecture, the compiler will bypass when targeting another
architecture. This optimization has been implemented in OpenUH, and we evaluate it for seven
NAS benchmarks.

7. EVALUATION

The experimental platform we used has an Intel Xeon E5-2640 processor, 32 GB main memory, and
an Nvidia Kepler GPU card (K20c) with 5 GB global memory. For a comparative analysis, we used
commercial OpenACC compilers from CAPS (3.4.3) and PGI (14.3). CUDA 5.5 is used for all the
three compilers. GCC 4.4.7 is used as the back-end host compiler for the CAPS source-to-source
compiler. We disable fused multiply add [16] so that we could make a fair CPU and GPU results
comparison. We use ‘-O3, -acc -ta=nvidia,cc35,nofma’ for the PGI compiler and ‘–nvcc-options
-Xptxas=-v,-arch,sm_35,-fmad=false gcc -O3’ for the CAPS compiler. OpenUH uses ‘-fopenacc -
nvcc,-arch=sm_35,-fmad=false -Wb,-rodc’ flag to compile the given OpenACC program. The flags
following ‘-nvcc’ are passed to the CUDA 5.5 compiler. The flag ‘-Wb,-rodc’ enables RODC in
OpenUH. To obtain reliable results, we took an average of 10 execution runs for every benchmark.

There are no case studies that could cover all reduction cases; hence, we designed and imple-
mented a test suite that validates all possible cases of reduction, including different reduction data
types and operations. This helped evaluate our reduction operations. The test suite checks for a pass
or a fail by verifying an OpenACC result with that of a CPU result. If the values do not match, it
implies there is an implementation issue. Time for each of the reduction cases is also measured; in
the event that the compilers under evaluation pass a test, we compare their performances as well.
When reduction occurs in one of the levels of parallelism, the other levels of parallelism contain
instructions being executed in parallel.

Only the reduction across multi-level thread parallelism (RMP) in the same loop uses one loop;
the other reduction tests use triple-nested loop. When one loop level needs to perform a reduction,
that loop iteration size is up to 1M and the other two loops are 2 and 32 because of the memory
limit of the hardware. Although we used triple-nested loop in experiments, the user can use the
collapse clause in OpenACC if the loop level is more than three. We discuss the results of
the most commonly used reduction operators ‘+’ and ‘*’; the implementation of other reduction
operators are almost the same.

Table IV depicts the performance gain with OpenUH over PGI and CAPS compilers using the
reduction test suite. OpenUH compiler can pass all the test cases [14]. The CAPS compiler failed
gang reduction and all tests of RMP in either different loops or the same loop. The PGI compiler
failed the sum reduction in worker, vector, and RMP in gang & worker & vector. It also failed
to compile the RMP in gang & worker. It is observed that in gang or vector reduction, the per-
formance achieved with OpenUH is similar to performance with the CAPS compiler, and only in
worker reduction is it slightly less efficient than the CAPS compiler. The performance with OpenUH
is better than with the PGI compiler for all reduction cases. Because we do not have access to
implementation details of commercial compilers, we could not delve deeper. We determine that two
features of our reduction algorithm helped to improve the performance: (1) using high bandwidth
and low latency shared memory exploits the full power of parallelism during local reduction in the
gang; and (2) sequential addressing, loop unrolling, and algorithm cascading [15] are applied during
the OpenACC optimization phases in order to improve the instruction-level parallelism.

We use the best hand-tuned CUDA code to analyze the results for OpenUH. We chose the same
problem size for the analysis and considered seven NAS benchmarks. They are Embarrassingly
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Table IV. Using Micro-reduction test suite, performance comparison of OpenUH OpenACC compilers with
PGI and CAPS: speedup = ExeT imeOtherCompiler

ExeT imeOpenUH
.

Data type

Int Double

Reduction Reduction Speedup over Speedup over Speedup over Speedup over CAPS
position operator PGI CAPS PGI CAPS

gang + 3.11 F 1.86 F
* 2.81 F 1.96 F

worker + F 0.71 F 0.83
* 1.85 0.71 1.63 0.84

vector + F 0.94 F 0.96
* 1.97 0.94 1.53 0.96

gang worker + CE F CE F
* CE F CE F

worker vector + 4.74 F 3.29 F
* 5.24 0.99 3.00 0.98

gang worker vector + F F F F
* 28.35 F 28.29 F

same line + 37.08 F 23.84 F
gang worker vector * 33.53 F 25.75 F

‘F’ stands for test FAILED, and ‘CE’ stands for compile-time error. The ‘same line gang worker vector’ row uses
only one loop; the other reduction tests used triple-nested loop where the outermost, middle, and the innermost
loops are gang, worker, and vector, respectively. The first column implies the reduction position. For instance,
‘gang worker’ means gang and worker loops need to do reduction while the vector loop executes in parallel.
Speedup larger than 1.0 implies efficient code generation by OpenUH.

Parallel (EP), Conjugate Gradient (CG), MultiGrid (MG), Scalar Pentadiagonal (SP), Lower-Upper
symmetric Gauss–Seidel (LU), Block Tridiagonal (BT), and Fast Fourier Transform (FT). We have
contributed EP, CG, BT, and SP benchmarks to SPEC ACCEL V1.0 [17]. We chose NPB for eval-
uation purposes because these codes are large and complex enough to simulate the behavior of real
applications. We found CUDA versions [9] for only BT, LU, and SP.

Our comparative analysis is organized into two parts. First up, we compare BT, LU, and SP Ope-
nACC performance with hand-tuned CUDA versions. Secondly, we compare results using OpenUH
and PGI for EP, CG, MG, and FT. The CAPS compiler generates incorrect results for most of the
cases, so we did not consider results from CAPS for this analysis. The PGI compiler can success-
fully compile BT, LU, and SP benchmarks; however, they crashed during program execution, so
we did not compare them with OpenUH. In NAS OpenACC benchmarks, we removed all the loop
scheduling clauses and let the PGI compiler auto-tune the best loop scheduling for each kernel and
parallel region. For OpenUH, we manually specified the loop scheduling for each kernel and parallel
region. OpenUH generates two versions of results: with and without RODC optimization.

In Figures 16–18, the usage of RODC shows improvement in performance, especially for BT,
LU, CG, and MG. A common feature of these applications is that all of them use a large number of
read-only buffers/arrays and thus benefit from using the RODC optimization. Figure 16(a), (b), and
(c) shows the comparison of speedup using OpenUH and CUDA. The structure of the CUDA code
is very different from that of the OpenACC structure, because the latter uses a sequential version of
the code as the starting point. However, OpenACC still yields competitive performance compared
with the tuned CUDA code. The performance range mentioned later corresponds to the perfor-
mance obtained for different classes (Classes A through C of NPB). When the BT benchmark uses
the RODC optimization, OpenACC reaches 85~96% of performance over CUDA. Without using
RODC optimization, BT achieved only 72~83% of performance over CUDA. For LU, with RODC
optimization, 72~87% of performance over CUDA was achieved. For SP case, the RODC does not
help much with performance improvement, but it still reaches 70~75% of performance over CUDA.
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Figure 16. Performance comparison of OpenUH and CUDA: speedup = ExeT imeSequential
ExeT imeParallel

. A, B, and C
are problem size: A < B < C. (a) Block Tridiagonal (BT); (b) Lower-Upper symmetric Gauss–Seidel (LU);

(c) Scalar Pentadiagonal (SP). RODC, read-only data cache.

Figure 17. Performance Comparison of OpenACC applications using OpenUH and PGI compiler: speedup
= ExeT imeSequential

ExeT imeParallel
. A, B, and C are problem size: A < B < C. (a) Embarrassingly Parallel (EP);

(b) Conjugate Gradient (CG). RODC, read-only data cache.

Figure 18. Performance comparison of OpenACC applications using OpenUH and PGI compiler: speedup
= ExeT imeSequential

ExeT imeParallel
. A, B, and C are problem size: A < B < C. (a) PGI failed in MultiGrid (MG) CLASS

C due to out of memory in device and OpenUH succeeds. (b) Both OpenUH and PGI failed in Fast Fourier
Transform (FT) CLASS C due to out of memory in device. RODC, read-only data cache.
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If the OpenACC code structure of SP and LU followed that of the CUDA code, performance of SP
and LU can still be improved. However, this will involve a deep understanding of the algorithms
and extensive rewriting of the codes. This will result in sacrificing portability to a large extent.

Figures 17 and 18 show the speedup of the OpenUH and PGI OpenACC compilers for EP, CG,
MG, and FT benchmarks. Figure 17(a) shows that the speedup of EP is not affected with or with-
out RODC optimization. This is because EP is compute-bound and uses very little read-only data.
Also, OpenUH performs better than PGI. Figure 17(b) shows that OpenUH performs much bet-
ter than PGI with RODC optimization. However, without RODC, PGI performs slightly better than
OpenUH. Figure 18(a) shows that MG is memory-bound, as a result of larger data sizes, that is,
Class C; PGI failed the execution at runtime. However, OpenUH was able to compile and run suc-
cessfully. The potential reason could be that in OpenUH, data once created resides in the GPU and
can be reused. Therefore, the data need not be re-created again, even if an access to a sub-array is
made. Figure 18(b) shows the result for FT. FT has a loop distributed across vector threads and uses
reduction. PGI shows poorer results because the parallel region is executed sequentially because of
the failed vector reduction. This scenario is consistent with a similar test case that we wrote as part of
our reduction microbenchmark suite. In this case, the data are transferred from GPU to CPU before
sequential execution, and it is transferred back to the GPU after sequential execution. This work-
around introduces a redundant data transfer. As a result, PGI does not perform well at all compared
with OpenUH. It indicates that the reduction operation not only has an impact on parallelism but
also helps remove redundant data movement. Note that both PGI and OpenUH ran out of memory
for Class C.

8. RELATED WORK

In this section, we will discuss some of the existing implementations of OpenACC compilers.
There are both commercial academic OpenACC compiler efforts to support high-level program-

ming models for GPGPUs. The CAPS compiler [18] uses the source-to-source translation approach
for both CPU and GPU. The PGI OpenACC accelerator compiler [19] uses a binary code genera-
tion approach. The nested gang and vector loop scheduling we implemented in OpenUH are also
supported in the PGI compiler. PGI implements aggressive implicit optimization for offload ker-
nels region and overrides user decisions, resulting in less user control over optimizations. The Cray
compiler [13] is another OpenACC compiler that can only be used on Cray platforms.

In the academic arena, OpenARC [20] from Oak Ridge National Labs is another effort toward
developing on open-source OpenACC compiler. OpenARC is based on the Cetus source-to-source
framework. However, it has not been released yet.

OpenMP [5] is another directive-based programming standard and provides accelerator support
in 4.0 version, which was released in 2013. Liao [21] verified a prototype of OpenMP using the
ROSE compiler, called Heterogeneous OpenMP. Heterogeneous OpenMP is still not mature yet to
handle the NAS benchmarks. We will leave the performance evaluation as future work.

Other directive-based approaches for GPGPUs include HiCUDA [22], HMPP [12], and the PGI
Accelerator Model [23]. HiCUDA is a low-level directive-based programming model. Because
HiCUDA only targets NVIDIA GPGPU, it provides a set of directives for users to manually control
the data cache, loop scheduling, and data movement between CPU and GPU. It is fully the program-
mers’ responsibility to control everything, which makes it still difficult to program. In addition to its
OpenACC implementation, CAPS also provides another directive-based programming model called
HMPP. HMPP and PGI accelerator models are similar in that the compiler can help users auto-
analyze and auto-tune the annotated computation kernels. Users also can use directives to choose
their own optimization decisions. However, none of them are standard, and therefore, their code is
not as portable as OpenACC.

9. CONCLUSION

In this paper, we presented a robust OpenACC implementation in the OpenUH compiler. We
describe our compiler framework, which provides a rich set of loop scheduling strategies, and com-
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prehensive solutions for reduction operations. We also discuss the read-only data cache optimization
for the Kepler architecture. The loop scheduling strategies and efficient reduction algorithms we
developed help to generate high-quality CUDA source code with OpenUH. We also deliver compile-
time detection mechanisms to recognize read-only array/buffer use in the application, taking
advantage of the read-only data cache in the hardware for OpenACC parallel and kernels regions.

We used the NPB applications to evaluate our design and implementation. A number of
accomplishments were presented. First, we provided compiler support for read-only data cache
optimization, which dramatically improved cases when there was a large number of read-only
data/buffer in the offloaded compute regions. Second, our compiler support for a directive-based
model, OpenACC, not only helped maintain source code consistency but also achieved performance
close to that of a well-tuned CUDA code for NPB applications (BT, SP, and LU). Third, our imple-
mentation of reduction algorithms provided robust and efficient results compared with other vendor
compilers. Evaluation for these solutions demonstrated that our compiler could yield competitive
performance compared with that of some of the existing vendor compilers.

As part of the future work, we will extend the back-end support for accelerators other than GPUs,
such as Intel Xeon Phi, AMD APUs, and so on. We will also take advantage of aggressive loop nest
optimizations that OpenUH offers to generate an even more optimized accelerator code.
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