
Optimizing GPU Register Usage:
Extensions to OpenACC and Compiler

Optimizations

Xiaonan Tian∗, Dounia Khaldi†, Deepak Eachempati∗, Rengan Xu∗ and Barbara Chapman∗†
∗Dept. of Computer Science
University of Houston

Houston, TX

Email:{xtian2, dreachempati, rxu6, bchapman}@uh.edu
†Institute for Advanced Computational Science

Stony Brook University

Stony Brook, NY

Email:{dounia.khaldi, barbara.chapman}@stonybrook.edu

Abstract—Using compiler directives to program accelerator-
based systems through APIs such as OpenACC or OpenMP
has increasingly gained popularity due to the portability and
productivity advantages it offers. However, when comparing the
performance typically achieved to what lower-level programming
interfaces such as CUDA or OpenCL provides, directive-based
approaches may entail a significant performance penalty. To
support massively parallel computations, accelerators such as
GPGPUs offer an expansive set of registers, larger than even
the L1 cache, to hold the temporary state of each thread. Scalar
variables are the mostly likely candidates to be assigned to these
registers by the compiler. Hence, scalar replacement is a key
enabling optimization for effectively improving the utilization
of register files on accelerator devices and thereby substantially
reducing the cost of memory operations. However, the aggressive
application of scalar replacement may require a large number
of registers, limiting the application of this technique unless
mitigating approaches such as those described in this paper are
taken.

In this paper, we propose solutions to optimize the register
usage within offloaded computations using OpenACC directives.
We first present a compiler optimization called SAFARA that
extends the classical scalar replacement algorithm to improve reg-
ister file utilization on GPUs. Moreover, we extend the OpenACC
interface by providing new clauses, namely dim and small,
that will reduce the number of scalars to replace. SAFARA
prioritizes the most beneficial data for allocation in registers
based on frequency of use and also memory access latency. It
also uses a static feedback strategy to retrieve low-level register
information in order to guide the compiler in carrying out the
scalar replacement transformation. Then, the new clauses we
propose will extremely reduce the number of scalars, eliminating
the need for more registers.

We evaluate SAFARA and the new clauses using SPEC and
NAS OpenACC benchmarks; our results suggest that these
approaches will be effective for improving overall performance
of code executing on GPUs. We got up to 2.5 speedup running
NAS and 2.08 speedup while running SPEC benchmarks.

Index Terms—OpenACC; GPUs, Scalar Replacement; Register
Usage Optimization; Static Feedback

I. INTRODUCTION

The hardware architectures of CPUs and GPUs are very

different because they target different types of applications.

CPUs are general-purpose processors and optimized to achieve

high performance on sequential code. GPUs were originally

designed for graphical computing, particularly SIMD opera-

tions. As GPUs are increasingly programmable, they become

massively parallel architectures. The memory system is one

of the most significant differences between CPUs and GPUs.

GPUs typically offer high-bandwidth memory to feed a large

number of parallel threads and use threads scheduling to

overlap computations with long-latency memory access.

GPUs platforms are a natural target for achieving data

parallelism by parallelizing loops and arrays, where each

iteration of the loop is executed on different data chunks of

an array. The characteristics of the memory access patterns

can have a huge impact on the overall performance. However,

analyzing these patterns is extremely challenging in low-level

programming models targeting GPUs, such as OpenCL and

CUDA, due to the frequent presence of pointer operations.

Data resides in the global memory and is passed by pointer to

kernel parameters. Extracting useful reuse information based

on the analysis of array indices poses significant difficulties.

On the other hand, high-level directive-based APIs for pro-

gramming GPUs, such as OpenACC [11] and OpenMP [12],

preserve high-level language features that can allow a compiler

to apply classical analysis and optimizations and generate

high-quality GPU code. Using directives that preserve the

usage of arrays also allows the compiler to retain reuse

information, array dimensions, etc. For these reasons, in this

work we consider OpenACC programs for demonstrating our

proposed optimization scheme. Note that the same strategy

can also be used for OpenMP programs utilizing directives

for accelerators, available in OpenMP 4.x.

Scalar replacement is a classical compiler optimization

2016 45th International Conference on Parallel Processing

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPP.2016.72

572

2016 45th International Conference on Parallel Processing

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPP.2016.72

572

2016 45th International Conference on Parallel Processing

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPP.2016.72

572

that can be used to eliminate frequent, redundant memory

accesses of data in a computational region (a contiguous

code fragment). Scalar replacement converts array references

to scalar variable, and then assigns these scalar variables

to registers. By replacing repeatedly used array references,

the compiler can reduce expensive memory load/store oper-

ations and instead make the data readily available for reuse

in the register files, before storing them back in memory

when not needed anymore. The classical scalar replacement

algorithm [10] works well for sequential programs running on

traditional CPU architectures. However, the algorithm does not

work well on parallel systems such as GPUs, which contain

complex memory hierarchies.

In this paper, we present SAFARA, an iterative GPU-aware

scalar replacement algorithm we developed for fully exploiting

the rich set of register file resources that are typical of GPU

architectures. SAFARA takes advantage of data reuse and

memory latency when allocating to registers. Moreover, since

the aggressive application of scalar replacement increases

register pressure, which may lead to low-thread occupancy or

cause register spilling, and thus hurt performance, we propose

two extension clauses to OpenACC to reduce the register

usage. The idea behind these two clauses, namely dim and
small is to save some register files for scalar replacement
by removing unnecessary array offset computations.

This paper makes the following contributions.

• We introduce a new algorithm to assist register allocation
called SAFARA, based on feedback information regard-

ing register utilization and a memory-latency-based cost

model to select which array references should be replaced

by scalar references.

• Two new clauses are proposed (dim and small) to
describe array dimensions and size information. The

compiler then can use these information to eliminate

unnecessary variables needed in offset computation, and

thus reduce register usage.

• We implemented SAFARA and the support for the new
clauses in the OpenUH compiler and evaluated it using

the NAS and SPEC benchmarks on NVIDIA GPU. We

got up to 2.5 speedup running NAS and 2.08 speedup for

running SPEC benchmarks.

The organization of this paper is as follows. Section II

provides an overview of the NVIDIA GPUs architecture, the

OpenACC programming model, and the OpenACC implemen-

tation within the OpenUH compiler. Section III introduces our

new scalar replacement algorithm in OpenACC offload regions

called SAFARA. Section IV presents the two new clauses we

suggest to add to the OpenACC API in order to optimize

register usage. Performance results are discussed in Section V.

Section VI highlights the related work in this area. Finally, we

conclude our work in Section VII.

II. BACKGROUND

In this section, we provide a brief introduction about the

architecture of GPUs, their memory hierarchy, OpenACC and

its implementation in the OpenUH compiler.

A. GPU Architecture

Modern GPUs consist of multiple streaming multiprocessors

(SMs or SMXs); each SM consists of many scalar processors

(SPs, also referred to as cores). Each GPU supports the

concurrent executions of hundreds to thousands of threads

following the Single Program Multiple Data (SPMD) program-

ming model, and each thread is executed by a scalar core.

The smallest scheduling and execution unit is called a warp,

which is composed of 32 threads. Warps of threads are grouped

together into a thread block, and blocks are grouped into a grid.
Both thread block and grid can be organized into a one-, two-

or three-dimensional topology.

B. GPU Memory Hierarchy

Modern GPUs deploy a deep memory hierarchy which

includes several different memory spaces. Each of them has

special properties. For example, accesses to global memory

could get coalesced/uncoalesced, accesses to texture memory

could come with spatial locality penalty, accesses to shared

memory could suffer from bank conflicts and accesses to con-

stant memory could be broadcast. All of them are organized

into a complex and deep GPU memory hierarchy which is

extremely different from the CPU memory model. Note that

memory coalescing is one of the key data locality features

that is provided by modern GPU architectures to exploit this

locality within a warp. The memory request is sent out by

each thread, and memory transactions from the same warp are

grouped together into large transactions. Basically, coalesced

memory transaction means that consecutive threads will access

consecutive memory addresses.

Figure 1 shows an overview of the memory hierarchy in

NVIDIA Kepler GPUs. Kepler GPUs have a global memory

space that is accessible by all threads in a grid, and this is the

space that the CPU memory can communicate with. Shared

memory is allocated per thread block, and is accessible by

threads within the thread block. Because the shared memory

is on-chip, latency is much lower than for global memory. The

L1 cache in the NVIDIA Kepler architecture is reserved only

for local memory accesses by default, such as register spilling

and stack data. Global loads/stores are cached in L2 only.

Read-only Data Cache was introduced in the latest NVIDIA

Kepler architecture. Each SMX has a 48KB Read-only Data

Cache. Each SP in SMX accesses data via the read-only cache

when the data is read-only for the lifetime of the CUDA kernel.

Each SMX has 256KB register files and each thread can use

up to 255 32bit register files.

C. OpenACC Programming Model

OpenACC is a high-level programming model that can be

used to port HPC applications to different types of accelerators

such as NVIDIA GPUs, AMD GPU & APU, and Intel Xeon

Phi. It provides directives, runtime routines and environment

variables as its programming interfaces. The execution model

assumes that the main program runs on the host, while the

compute-intensive regions of the program are offloaded to the

attached accelerator. The accelerator and the host may have

573573573

Threads

Shared�
Memory

L1�
Cache

Read�Only
Data�Cache

Register�Files

GPU�Global�MemoryTexture�
memory

Constant�
memory

L2�Cache

Fig. 1: NVIDIA Kepler GPU Memory Hierarchy

separate memories, and the data movements between them

may be controlled explicitly. OpenACC provides a rich set of

data transfer directives, clauses and runtime calls as part of

its standard. To minimize the performance degradation due to

data transfer latency, OpenACC also allows asynchronous data

transfers and asynchronous computations with the CPU code,

thus enabling overlapping data movement and computation.

OpenACC uses the parallel or kernels constructs to
define a compute region that will be executed in parallel on the

device. The loop construct is used to specify the distribution
of iterations. The purpose of having both parallel and
kernels is that the parallel construct provides more
control to the user while the kernels one offers more control
to the compiler. The reduction clause is allowed on a
loop construct. We denote both parallel and kernels regions

as ‘offload’ regions in this paper. The execution model of

OpenACC assumes that the main program runs on the host,

while the compute-intensive regions of the main program are

offloaded to the attached accelerator. In the memory model,

usually the accelerator and the host CPU use separate memory

addresses to prevent conflicts between CPU and accelera-

tors. OpenACC 1.0 discusses different types of data transfer

clauses. Some additional data directives and runtime routines

to control the unstructured data lifetime have been added in

the 2.0 specification.

D. OpenACC Implementation in OpenUH

The OpenACC support that has been implemented in

OpenUH [17], [16] addresses three areas: (1) an extended

front-end that accepts the OpenACC directive syntax in C and

Fortran, (2) middle-end/back-end analyses, optimizations and

translations for OpenACC offload regions, and (3) enhanced

IR-to-source tools for supporting CUDA/OpenCL kernel func-

tion translation. As shown in Figure 2, we use a source-

to-source translation technique to translate OpenACC offload

regions into CUDA/OpenCL code. NVCC is the CUDA com-

piler. OpenUH directly generates object code for the x86 host

CPU.

PRELOWER
(Preprocess OpenACC)

LOWER
(Transformation of OpenACC)

WHIRL2CUDA/OpenCL

CG(Code for IA-32,IA-64,X86_64)

OpenUH OpenACC Compiler Infrastructure

Source Code
with OpenACC

Directives

CPU Binary Executable

LNO
(Loop Nest Optimizer)

Pre-OPT
(SSA-Analysis)

WOPT
(Global Scalar Optimizer)

PTX
Assembler

Loaded
Dynamically

Runtime
Library

tttttttttttti

CUDA

NVCC
compiler

Linker

Feedback

FRONTENDS
(C, Fortran, OpenACC)

Fig. 2: OpenUH OpenACC Compiler Infrastructure

III. SAFARA: STATIC FEEDBACK-BASED REGISTER

ALLOCATION ASSISTANT FOR GPUS

Scalar replacement (SR) is a classical optimization that can

be applied to improve utilization of register files. In this section

we present what we view as limitations of the state-of-the-art

algorithm, by Carr and Kennedy [1], and we introduce our

new algorithm called SAFARA.

A. The Carr-Kennedy Algorithm

The scalar replacement algorithm [1] includes three phases:

(1) a dependence distance-based data reuse analysis, (2) a

moderation model of register pressure, and (3) the scalar

replacement transformation. The Carr-Kennedy algorithm [1]

uses input and flow dependence analysis to find the array

references. If all of the reused memory references found in

the first phase are replaced with scalar, the performance of

the application may slow down because of register spilling.

The moderation of register pressure is used to find out the

most beneficial memory references that can be replaced with

scalars. Once the memory references that are chosen to be

replaced with scalars are determined, the compiler performs

the scalar replacement transformation to replace the memory

references with scalars. However, the Carr-Kennedy algorithm

cannot be directly applied to OpenACC offload regions. In this

section, we present its limitations when applied to GPUs.

1) Creation of Inter-iteration Dependences in Parallelized
Loops: The first limitation of the Carr-Kennedy algorithm is
that it may translate an independent loop into a dependent

loop that cannot be parallelized. An example of a parallel

loop is provided in Figure 3, where the array references b[i]
and b[i+1] introduce an input data dependence edge which
has a dependence distance of 1. Therefore, the data loaded in

b[i+1] at iteration i will be used in array reference b[i]
at iteration i+1. The Carr-Kennedy algorithm will detect the

data reuse opportunities and perform the scalar replacement

optimization. The loop will be thus transformed into the code

shown in Figure 4, which has only 1 array reference in

574574574

the loop body. The loop in Figure 4 introduces loop-carried

flow dependences across iterations between b1 and b[i+1].
Consequently, the loop cannot be parallelized. This conflicts

with the goal of OpenACC which is to expose parallelism

to be exploited by the massively parallel accelerator. In fact,

executing the loop sequentially by each thread of the GPU

will lead to a significant performance penalty. Therefore, in

our solution, we will prevent scalar replacement from being

performed across iterations, if the loop can be parallelized.

for(i=1; i<=SIZE ; i ++)
a[i] = (b[i] + b[i+1])/2;

Fig. 3: Before SR: iterations are independent

b1=b[1]
for(i=1; i<=SIZE ; i ++){

b2=b[i+1];
a[i] = (b1 + b2)/2;
b1 = b2;

}

Fig. 4: After SR: iterations are dependent

#pragma acc loop gang vector
for(j=1; j<=JSIZE ; j ++){

c[j] = b[j][0] + b[j][1];
d[j] = c[j] *b [j][0];

#pragma acc loop seq
for(i=1; i<=ISIZE ; i ++){

a[i][j] += a[i-1][j] + b[j][i-1] +
a[i+1][j] + b[j][i+1];

}
}

Fig. 5: Sample OpenACC program before SR

2) Cost Model not Adapted to GPUs: The memory access
latency in GPUs is different from the one of traditional CPU

systems. In the Carr-Kennedy algorithm, the metric used is

how many memory accesses can be removed. For this, a

model of register pressure moderation is designed to select

the most beneficial references to be transformed into scalar

variables if limited register files are available. For instance, in

Figure 5, references to each array a and b require 3 temporary
variables. In the Carr-Kennedy algorithm, when the number

of available registers is limited, the array references of a have
higher priority to be replaced with scalar variables because it is

used one more time than b. However, in GPUs, another metric
should be taken into account due to the memory hierarchy

of GPUs; this is the second limitation of this algorithm for

our purpose. In fact, since iterations in Loop j are distributed
across the x-dimension of each thread in each thread block, the

memory access in a are coalesced within a warp. Meanwhile,
the memory accesses in b are uncoalesced within a warp.
Thus, the memory access latency of b is much higher than

that of a. In this case, replacing array references of b will
have a better benefit than replacing the references of a.

B. SAFARA: StAtic Feedback-bAsed Register allocation Assis-
tant for GPUs

SAFARA addresses the two limitations presented in the

previous section. For the 1st limitation, the scalar replacement

approach can be divided into intra-iteration and inter-iteration

transformations. If the loop is identified as parallelized in

OpenACC, only the intra-iteration SR is performed to avoid to

sequentialize it. Otherwise, if the loop is sequential, then inter-

iteration SR can be safely applied. As for the 2nd limitation,

three new components are integrated.

1) First, during the dependence analysis to retrieve data

reuse, we count how many times every array reference

is used (read/write). Then, array references are classified

into four categories according to the memory hierarchy

in the GPU: shared, constant, read-only (available in

NVIDIA Kepler GPUs only) and global memory ac-

cess 1. Read-only and global memory data accesses

can be further divided into coalesced and uncoalesced

accesses. Each of them has different memory access

latency [6].

2) Second, we use GPU tools to pinpoint the register usage

information and then feed it back to the OpenACC

compiler to perform the SR. The NVIDIA GPU tool

we used is called PTXAS Info.
3) Third, using the information from the first step, we

estimate the cost of each array reference R belonging to
a memory space M , using the formula
reference count(R) × memory access latency(M).
Then, all array references can be sorted from higher

to lower cost. After that, we select the most beneficial

memory references to be replaced by scalar variables.

4) Go to Step 2 until all the registers are used or all the

reused references are replaced.

In the following subsections, we explain in details the method-

ology followed by these steps.

1) Array Reference Analysis in SAFARA: Memory access
pattern analysis is introduced into SAFARA to classify dif-

ferent memory access modes. Basically, the memory access

latency depends on where the data is located and how the

data is accessed. There are several different memory spaces in

modern GPU architectures. For the NVIDIA Kepler GPUs,

there are shared memory, read-only global data, read/write

global data, constant memory and texture memory. Read-

only data can be placed in the global memory and cached

by the read-only data cache in each SM. While building

the dependence graph, the compiler performs array index

analysis to determine if the memory access is coalesced or

not. The index analysis that is used in our algorithm is inspired

from [8] which proposes a mathematical model that captures

and characterizes memory access patterns inside nested loops.

1Note that in our implementation, we only consider read-only and global
memory accesses.

575575575

This is used to recognize if the memory access is coalesced

or not.

2) Iterative Register Information Feedback to SAFARA: We
use register utilization information from GPU tools to improve

the scalar replacement transformation done in SAFARA. In

traditional CPU compilers that perform register allocation

and directly generate actual assembly code, this register in-

formation is available during compile time. However, since

GPU architectures change dramatically between generations,

compilers for GPUs generate a stable, virtual ISA that spans

multiple GPU generations and use pseudo registers. For ex-

ample, NVIDIA uses “PTX”. There are unlimited pseudo

register numbers available in the virtual ISA. The compiler

cannot determine how many hardware registers have been

used. Vendors, including NVIDIA, provide closed-source low-

level assembler tools to translate the virtual ISA into actual

GPU assembly code and allocate hardware registers.

In our work, we propose to assist the compiler by using

feedback information from these tools to calculate how many

hardware registers are available. Moreover, backend compila-

tion is performed multiple times. The first time does not per-

form any scalar replacement; it is only dedicated to invoking

the GPU assembler tool to output the hardware register usage

information. The following compilation combines the register

usage information and register upper limit specified by the

hardware limit (for instance the maximum number that can

be used in NVIDIA Kepler GPU is 255 registers per thread)

to determine the availability of registers. If there are available

registers, the scalar replacement optimization is invoked. The

compiler analysis lists all the memory references that can

satisfy the scalar replacement requirements. If the number of

candidates is less than the available register count, all of them

are replaced by scalars. Otherwise, the cost model based on

array references selection is invoked.

3) Cost Model for Array References Selection: In contrast
to traditional CPU architectures, overuse of GPU register files

causes severe performance degradation due to register spilling

as well as lowering of thread concurrency. This raises the issue

of how to select good memory references if their number

is larger than the number of available registers. We use a

cost model to prioritize memory accesses for replacement.

It is based on the memory access latency, which is used to

estimate the potential cost of different memory accesses. The

model consists of two factors: memory access latency L and
references count C. The potential access cost is computed as
L × C. Note that the method used to measure the latency of
GPU memory accesses employs the microbenchmark proposed

by [19].

4) Running Example with SAFARA: In the following, we
demonstrate the application of SAFARA on the example

shown in Figure 5. After the first time we apply the first

iteration of SAFARA, we suppose that the GPU tool outputs

26 as the number of registers that are used. We suppose that the

hardware limit is only 30 registers. So, the number of available

registers found by our algorithm is 4. In the second iteration of

SAFARA, the scalar replacement is applied on Array b using

3 registers (recall that Array a is coalesced and should not be
put in registers) and the code will be transformed into the code

shown in Figure 6. Note that this code will need 4 iterations

to complete. After four iterations of the feedback feature of

SAFARA, we saturate the number of registers available and

we replace the most beneficial memory accesses.

#pragma acc loop gang vector
for(j=1; j<=JSIZE ; j ++){

c[i] = b[j][0] + b[j][1];
d[j] = c[j] *b [j][0];
b0=b[j][0];
b1=b[j][1];
for(i=1; i<=ISIZE ; i ++){

b2 = b[j][i+1];
a[i][j] = a[i-1][j] + b0

+ a[i+1][j] + b2;
b0 = b1;
b1 = b2;

}
}

Fig. 6: Sample OpenACC program after SAFARA

IV. PROPOSED EXTENSIONS TO OPENACC: DIM AND

SMALL NEW CLAUSES

Scalar replacement is a classical memory optimization al-

gorithm to reduce redundant memory access. In the previous

section III, we presented an extension to SR by providing

different techniques and we called this extension SAFARA.

However, the aggressive application of scalar replacement

increases register pressure, which may lead to low threads

occupancy or cause register spilling, and thus hurt perfor-

mance. To confirm this result, we perform a study on the

SPEC benchmark suite and we show experimental results in

Figure 7. The experimental setup is provided in SectionV-A.

In this study, we found that SAFARA provides either very

small performance improvement or sometimes slows down the

application when registers are exhaustively used by threads,

because this leads to low threads occupancy; we also found

that no register spilling happened based on SAFARA feedback

information. Finding the best combination between what is the

optimal number of registers to use by each thread and thread

occupancy is a complex problem [18]. Note that this paper

does not solve this problem of finding the best number of

registers to get peak performance. However, this work focuses

on minimizing the number of registers. In this section, we

propose a solution at the API level of OpenACC to reduce

the number of scalars that will be held potentially in registers.

This will save some registers to use by each thread and thus

increase threads occupancy.

Array references are frequently used in high-level pro-

gramming models like OpenMP and OpenACC that are API

extensions to C/C++ and Fortran languages. SPEC benchmarks

for example contain a lot of array references. When the

offload region is translated into the GPU lower level kernel

routines (using CUDA for example), the array reference is

576576576

��

����

����

����

����

�	

�	��

�	��

�
��������

�������

	�������

�����

�
���������

����������

�����

�����������

��������

�
�� ��

!�
��
�"
��

��
�!
#$
#%
#

Fig. 7: Speedup results of SPEC benchmark suite with

SAFARA

represented using a pointer and offset calculation operations.

The idea behind the two clauses we want to introduce is to

save some register files for scalar replacement by removing

unnecessary array offset computations. The programmer can

directly use these two clauses to pass array information to

the compiler. We provide a motivation example in Figure 8

which shows a snippet of one of the offload regions in

SPEC Accelerator 355.seismic benchmark. In this code, Loop

j iterations are distributed across the y-dimensional threads
and Loop i iterations are carried by x-dimensional threads
in the GPU. The iterations in Loop i and Loop j are evenly
distributed across all the threads and each thread only executes

one iteration. The innermost Loop k is executed sequentially
and SAFARA can be applied over array references across the

k iteration.

!$acc kernels loop gang(NY/2) vector(2)
do j = 2,ny
!$acc loop gang((NX-1+63)/64) vector(64)
do i = 1,nx-1
!$acc loop seq
do k=2,nz
...
value_dz = (vz_1(i,j,k)-vz_1(i,j,k-1))/h &

+ (vz_2(i,j,k)-vz_2(i,j,k-1))/h &
+ (vz_3(i,j,k)-vz_3(i,j,k-1))/h

...
enddo

enddo
enddo

Fig. 8: Snippet code from SPEC 355.seismic benchmark

A. dim Clause

In multiple scientific kernels including SPEC, the arrays

are allocatable arrays (case of Fortran) or Variable-Length

Arrays (VLA) (case of C/C++). These arrays are dynamically

allocated; the dimensional information of the array is held in

a dope vector data object generated by the compiler. In the

example provided in Figure 8, the offset calculation requires

five additional compiler-generated temporary variables to hold

the lower bound and length for each dimension in Fortran,

while in VLAs in C/C++, we need temporary variables to

hold the length for each dimension, since the lower bound is

always zero. The listing below details the computation of the

offsets and reference addresses for the three array references in

Figure 8. The variables t0,...,t14 hold dimensional information

for each array. Note that 15 scalar variables are used to keep

the boundary information and calculate the offsets of the three

arrays.

o f f s e t 0 = (i−t 0) + t 3 ∗ ((j−t 1) + t 4 ∗ (k−t 2))
vz 1 (i , j , k) −−> ∗ (vz 1 + o f f s e t 0)

o f f s e t 1 = (i−t 5) + t 8 ∗ ((j−t 6) + t 9 ∗ (k−t 7))
vz 2 (i , j , k) −−> ∗ (vz 2 + o f f s e t 1)

o f f s e t 2 = (i−t 10) + t13 ∗ ((j−t 11)+ t14 ∗ (k−t 12))
vz 3 (i , j , k) −−> ∗ (vz 3 + o f f s e t 2)

However, these three arrays have exactly the same di-

mensions. If the compiler has this equality of dimensions

information, the array references address computation can be

optimized into a simplified version which is shown in the

listing below:

o f f s e t 0 = (i−t 0) + t 3 ∗ ((j−t 1) + t 4 ∗ (k−t 2))
vz 1 (i , j , k) −−> ∗ (vz 1 + o f f s e t 0)
vz 2 (i , j , k) −−> ∗ (vz 2 + o f f s e t 0)
vz 3 (i , j , k) −−> ∗ (vz 3 + o f f s e t 0)

At the compilation time, the compiler has no idea whether

these arrays have the same dimension. Therefore, we propose

a new clause dim to be added to kernels and parallel
directives to specify which arrays share the same dimension(s).

At the GPU code generation phase, the compiler can take

advantage of this clause information and optimize the offset

computation. Note that, in this specific example, the number

of registers needed can be reduced to 5, which corresponds

to (number of scalars)/(number of arrays). The dim clause
syntax is shown below:

Fortran:
!$acc kernels/parallel &

dim([(lb1:len1,...,lbN:lenN)](A1,...,),...)

C/C++:
#pragma acc kernels/parallel \

dim([len1]...[lenN](A1,...,),...)

Note that dimension data in the clause syntax is optional. If

the user does not specify the dimension data, as follows, the

compiler can automatically load lower bounds and length data

from one of the array’s dope structure:

!$acc kernels dim((vz_1, vz_2, vz_3))
However, we recommend providing complete information

(dimensions and arrays) because the compiler can simplify

further the offset computation, in particular when the lower

bound is zero, as below:

!$acc kernels &
dim((0:NX, 0:NY, 0:NZ)(vz_1, vz_2, vz_3))

577577577

B. small Clause

In the case of 64-bit scalar, the register allocation phase in

the compiler replaces it into a 64-bit register. However, in the

GPU, the general purpose registers are only 32bits. So, a 64-

bit scalar requires two consecutive GPU registers to hold the

entire value of the scalar.

On 64-bit machines, the compiler uses a pointer type of

64-bits size while an offset is also a 64-bit integer. However,

if the array size is less than 4GB, array references address

computation can be represented with 64-bit addresses and 32-

bit integer offsets. The size of register files used for offset

computations can thus be reduced by up to half. In fact, small

array sizes are common in current applications due to the

limited device memory. Note that when the array is a static

array in both C or Fortran, the compiler can detect the array

size and decide whether 32-bit integers are enough to handle

the offset value computation. However, when an allocatable

array or VLA is used, the compiler cannot figure out the array

size. By default, the compiler will use 64-bit integer to be safe.

Therefore, we propose the new clause small to tell the
compiler that the offset of an array can be represented within

a 32-bit integer. Here, a small array means the array size is

smaller than 4GB and array references of such arrays can be

represented with an array address plus a 32-bit integer offset.

The small clause syntax is shown below:

Fortran:
!$acc kernels/parallel &

small(A1,...,An)

C/C++:
#pragma acc kernels/parallel \

small(A1,...,An)

If we apply this clause to the previous example, as follows,

the register number can be divided by 2:

!$acc kernels &
dim((0:NX, 0:NY, 0:NZ)(vz_1, vz_2, vz_3)) &
small(vz_1, vz_2, vz_3)

Note that in the case where the user provides incorrect

information inside the proposed clauses, the compiler can

generate two versions of each kernel: (1) optimized kernel:

that assumes that the information from the user is correct,

(2) unoptimized kernel: that ignores the clauses. Also, the

compiler can generate a segment of code responsible for

verifying the correctness of the clauses. At runtime, this

segment will be run and a decision will be made to execute

the optimized or unoptimized kernel.

V. EVALUATION

To assess the ability of SAFARA augmented with the

proposed clauses to optimize the register usage in GPUs, we

implemented SAFARA and the dim and small clauses in the
OpenUH compiler. This section discusses experimental results

for our implementation on two sets of benchmarks: (1) SPEC

ACCEL suite [9] and (2) NPB OpenACC suite [20].

A. Experimental Setup

We gathered performance results via experiments we per-

formed on a NVIDIA GPU. The machine we used includes

a host with 8 cores Intel Xeon x86 64 CPU and 32GB

main memory; the attached GPU is a K20Xm with 5GB

global memory. CUDA 6.5 is used for the OpenUH backend

GPU code compilation with ”-O3” optimization. For the

comparative analysis, we used one of the major commercial

OpenACC compiler vendors, namely PGI V15.9. We use ”-

O3,-acc -ta=nvidia,cc35” for the PGI compiler options. To

obtain reliable results, all experiments were performed five

times and then the average performance was computed.

B. SPEC and NPB OpenACC Benchmarks

We chose these benchmarks since their codes are large and

complex enough to simulate the behavior of real applications.

The SPEC ACCEL benchmark suite includes two independent

suites which are OpenCL and OpenACC ones. The SPEC

OpenACC suite includes both C and Fortran applications

and is used in this work. NPB OpenACC benchmarks are

written in C language. NPB are well recognized for eval-

uating current and emerging multi-core/many-core hardware

architectures, characterizing parallel programming models and

testing compiler implementations. NPB OpenACC suite offers

open-source benchmarks. In this benchmark suite, we used

six benchmarks: EP (Embarrassingly Parallel), CG (Conjugate

Gradient), MG (MultiGrid), SP (Scalar Pentadiagonal), LU

(Lower-Upper symmetric Gauss-Seidel), BT (Block Tridiag-

onal). Note that the problem size ”C” is used for evaluation

for all the six benchmarks.

C. Performance Evaluation

Figure 9 shows speedup results for the SPEC ACCEL

benchmark suite after applying first the dim and small
clauses to reduce the number of required registers and then

SAFARA to make the scalar replacement. Note that speedup

numbers correspond to the optimizations applied one after an

another (small, then small + dim, then small + dim
+ SAFARA). Note that Benchmarks 303, 304, 314 are C

benchmarks and pointer operations are used in the offload

regions; thus a dim clause cannot be used here. The dim
clause is used in 355 and 356, which are Fortran applications

and include many allocatable arrays. By comparing with

Figure 7, the speedup is boosted up to 1.46x and performance

did not slow down anymore after introducing small and
dim clauses (note how 355.seismic overused the register files
in Figure 7 and the application did slow down). Meanwhile

many registers and operations are dedicated for array offset

computations. The two clauses helped in reducing the number

of variables used in these computations and thus improving the

performance. In 356.sp, the first five kernels execution times

constitute most of the benchmark execution time. Also, there

are many uncoalesced memory accesses in these kernels. So

the performance bottleneck is in exploiting first the memory

access latency. This will require to change the benchmark

algorithm which is out of scope of this work. This justifies why

578578578

saving registers in these kernels did not help with improving

the performance.

��

����

��

����

��

����

��

�������	
��

�������

���������

������

�������	��

�����	�����

������

������
������

��������

��������

��
		

��
�

���	 ��� ��� �� �!�

Fig. 9: SPEC ACCEL SUITE performance improvement

Figure 10 shows the performance evaluation of the NAS

benchmarks. The six benchmarks are written in C language

and do not use VLAs; so a dim clause is not useful in
this case. BT, LU and SP have several kernels that contain

uncoalesced memory accesses. Thus, SAFARA can help in

reducing such costly accesses by prioritizing their placement

in register files. However, regarding the small clause, among
LU, SP, and BT, only BT showed benefit from using this

clause. The reason is not known to us because the actual

register allocation is done at a much lower level of the CUDA

compiler, which we do not control.

��

����

��

����

��

����

��

�� �� �� �	
� ��

��

��
�

��� ����� ������

Fig. 10: NAS ACCEL SUITE performance improvement

We also compare our implementation in OpenUH with

the PGI compiler for both SPEC in Figure 11 and NAS in

Figure 12. We provide numbers for (1) the base OpenUH

compiler by disabling the optimizations we presented in this

paper, (2) enabling SAFARA, and (3) adding the two clauses to

the code and then applying SAFARA. In the second and third

cases, the OpenUH compiler generates efficient GPU kernels

that outperform the PGI compiler. Note that the execution time

in these plots is normalized in order to put all the benchmarks

in the same figure; this is due to the fact that some benchmarks

run in few seconds, and some of them need several hundreds

of seconds to finish the execution.

Norm(Compiler) = ExeTime(Compiler)
max(ExeTime(OpenUH),ExeTime(PGI))

��

����

����

����

����

�	

�	��

�	��

�
��������

�������

	�������

�����

�
���������

����������

�����

�����������

��������

�
�� ��
�
��
�
��
��
��
��
��
��
��
��
��

�����&�'(���)
�����&�'*+,-,.,)

�����&�'*+,-,.,*���/���)
��0

Fig. 11: SPEC performance comparison between the OpenUH

and PGI compilers. The execution time is normalized and the

lower, the better

��

����

����

����

����

�	

�	��

�	��

�� �� �� �	
� ��

�
�
�
��
��
��
��
��
�
��

��
��

����	��������
����	����� ! " �

����	����� ! " ����#����
��$

Fig. 12: NAS performance comparison between the OpenUH

and PGI compilers. The execution time is normalized and the

lower, the better

D. Register Usage Evaluation using small and dim Clauses

In order to assess whether the small and dim clauses can
effectively reduce the register usage when multiple allocatable

arrays or VLAs are used in Fortran or C codes, we introduce

another metric: the number of registers used in a kernel with

and without the small and dim clauses. There are 15 kernels
in 355.seismic and more than 40 kernels in 356.sp. We chose

579579579

the 7 hottest kernels in seismic and the 10 hottest kernels

in sp to perform this experiment. Note that 355.seismic and

356.sp are two Fortran applications where allocatable arrays

are used. In a compiler, there are multiple optimizations eager

to use register files, such as kernel merging, loop unrolling,

scalar replacement and memory vectorization [8]. The registers

saved by the small and dim clauses can be used by these
optimizations.

For 355.seismic, we take the 7 hottest kernels that constitute

together 80% of the total execution time. Table I shows

the register usage optimization results. The register files can

be largely reduced by small and dim clauses if multiple
allocatable arrays are used in the same kernel.

TABLE I: 355.seismic register files usage improvement via

small and dim clause

Kernels Base +small w dim Saved

HOT1 128 104 48 80
HOT2 134 105 41 93
HOT3 101 90 47 54
HOT4 90 78 44 46
HOT5 86 79 44 42
HOT6 88 77 40 48
HOT7 76 73 40 36

356.sp has 10 frequently used allocatable arrays with two

different dimensional information. However, most of the ker-

nels only use one of them (the ones with NA: dim was not
used). We chose the 10 hottest kernels (based on the execution

time) and investigated the register usage information. From

Table II, the register files are largely reduced in the three

kernels that access multiple of these arrays. NA corresponds to

kernels that use only zero, one allocatable array, or allocatable

arrays that do not have equal dimensions; in this case, dim
should not be used.

TABLE II: 356.sp register files improvement by small and
dim clause

Kernels Base +small w dim Saved

HOT1 72 67 NA 5
HOT2 70 54 51 19
HOT3 82 66 NA 16
HOT4 82 66 59 23
HOT5 74 37 32 42
HOT6 57 57 NA 0
HOT7 95 78 60 35
HOT8 211 152 112 99
HOT9 184 146 114 70
HOT10 60 58 NA 2

VI. RELATED WORK

While the original scalar replacement algorithm was pro-

posed more than 20 years ago, computer architectures have

evolved considerably since then. Numerous past works exist

for improving this algorithm in many aspects. Sastry [13]

and Sarkar [15] both proposed new algorithms based on the

SSA form. Budiu [4] presented a simplified Carr-Kennedy [5]

inter-iteration register promotion algorithm to handle a number

of dynamically executed memory acceses. Hall [14] demon-

strated an algorithm to increase the data reuse across multiple

loops. Baradaran [3] described a register allocation algorithm

that assigns registers to array references replaced with scalars

along the critical paths of a computation. However, none of

these algorithms can effectively work for GPU architectures.

While the register moderation model in the Carr-Kennedy

algorithm works well for a traditional CPU memory hierarchy,

the cost model-based strategy in SAFARA selects the most

profitable array reference candidates for mapping to register

files through scalar replacement.

Budiu [4] proposed a simplified Carr-Kennedy iter-iteration

register promotion algorithm to handle dynamically executed

memory accesses. In their approach, the compiler generates

a flag represented by a single bit that is associated with

each value to be scalarized, as well as code that dynamically

updates the flag. The flag can be inspected at run time to

avoid redundant load operations, and their algorithm ensures

that only the first load and last store take place. Since this

algorithm inserts a large number of additional control flow

statements throughout the code, the resulting behavior when

executed on a GPU is thread divergence. This will produce

additional overhead and significantly degrade performance. In

short, this algorithm is not GPU-friendly.

Andión [2] presented a new scalar replacement algorithm

for offload computation regions specified using the HMPP

directive interface [7]. This work is the most similar to our

paper. Both works target a GPU offload region expressed

using high-level directives. Nevertheless, their algorithm over-

utilizes the register files for each thread, which may cause

severe performance penalties due to register spilling and GPU

low threads occupancy. There are three additional limitations.

First, array references with index expressions only consisting

of the parallelized loop indices are potential reuse candi-

dates. However, their approach does not handle loop-invariant

variables used in array subscripts, which can also be used

to estimate the reuse of array references. Second, the array

reference access mode is not considered, and the cost of

different types of memory access varies. For example, if a

read-only array is present in the Read-Only Data Cache, then it

will be accessed in a coalesced manner and it is not beneficial

to replace them with scalars. Third, all the reused references

are replaced with scalars. This does not take into account how

many hits each reference induces. Therefore a replacement

may not be beneficial in some instances when a low amount

of hits occurs.

Regarding improving register usage using extensions to the

API, to the best of our knowledge, our work is the first paper

to propose such an optimization.

VII. CONCLUSION

In this paper, we present an extension to the classical

scalar replacement algorithm called SAFARA that is based

on feedback information regarding register utilization and

a memory latency-based cost model to select which array

references should be replaced by scalar references. It includes

580580580

three main steps. First, a dependence analysis is used to

retrieve data reuse information that is classified based on their

location, and thus their latency, in the GPU memory hierarchy.

Second, we use GPU tools to pinpoint the register usage

information and then feed it back to the OpenACC compiler

to perform the scalar replacement transformation. Third, our

algorithm prioritizes the most beneficial data for allocation in

registers, based on frequency of use and also memory access

latency. Moreover, since the aggressive application of scalar

replacement increases register pressure, we propose two new

clauses to add to OpenACC, namely dim and small, to
reduce the register usage.

We evaluate SAFARA and the new clauses using SPEC

and NAS OpenACC benchmarks; the results suggest that these

approaches are effective for improving the overall performance

of code executing on the GPU. We got up to 2.5 speedup run-

ning NAS and 2.08 speedup while running SPEC benchmarks.

In future work, we plan to combine other classical opti-

mizations like loop unrolling and memory vectorization with

SAFARA and the new clauses.

ACKNOWLEDGMENT

This work was supported in part by the Total E&P USA

and NSF under Award No. CCF-1409946. The authors would

also like to thank Pierre Jouvelot and Gregory Rodgers whose

comments improved this work and PGI for providing the

compilers and support for the evaluation.

REFERENCES

[1] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architec-
tures: A Dependence-based Approach, volume 289. Morgan Kaufmann
San Francisco, 2002.

[2] J. M. Andión, M. Arenaz, F. Bodin, G. Rodrı́guez, and J. Touriño.
Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP
Directives. International Journal of Parallel Programming, pages 1–24,
2014.

[3] N. Baradaran and P. C. Diniz. A Register Allocation Algorithm in the
Presence of Scalar Replacement for Fine-grain Configurable Architec-
tures. In Design, Automation and Test in Europe, 2005. Proceedings,
pages 6–11. IEEE, 2005.

[4] M. Budiu and S. C. Goldstein. Inter-iteration Scalar Replacement
in the Presence of Conditional Control-flow. Technical report, DTIC
Document, 2004.

[5] S. Carr, S. Carr, S. Carr, K. Kennedy, K. Kennedy, and K. Kennedy.
Scalar Replacement in the Presence of Conditional Control Flow.
Software Practice and Experience, 24:51–77, 1992.

[6] G. Chen, B. Wu, D. Li, and X. Shen. Porple: An extensible optimizer
for portable data placement on gpu. In Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, pages 88–
100. IEEE Computer Society, 2014.

[7] R. Dolbeau, S. Bihan, and F. Bodin. HMPP: A Hybrid Multi-core
Parallel Programming Environment. In Workshop on General Purpose
Processing on Graphics Processing Units (GPGPU 2007), 2007.

[8] B. Jang, D. Schaa, P. Mistry, and D. Kaeli. Exploiting Memory Access
Patterns to Improve Memory Performance in Data-Parallel Architectures.
Parallel and Distributed Systems, IEEE Transactions on, 22(1):105–118,
Jan 2011.

[9] G. Juckeland, W. Brantley, S. Chandrasekaran, B. Chapman, S. Che,
M. Colgrove, H. Feng, A. Grund, R. Henschel, W.-M. W. Hwu,
et al. Spec accel: A standard application suite for measuring hardware
accelerator performance. In High Performance Computing Systems.
Performance Modeling, Benchmarking, and Simulation, pages 46–67.
Springer, 2014.

[10] K. Kennedy and J. R. Allen. Optimizing Compilers for Modern Archi-
tectures: A Dependence-based Approach. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2002.

[11] OpenACC. http://www.openacc-standard.org, 2015.
[12] OpenMP. www.openmp.org, 2015.
[13] A. Sastry and R. D. Ju. A New Algorithm for Scalar Register Promotion

based on SSA Form. 33(5):15–25, 1998.
[14] B. So and M. Hall. Increasing the Applicability of Scalar Replacement.

In Compiler Construction, pages 185–201. Springer, 2004.
[15] R. Surendran, R. Barik, J. Zhao, and V. Sarkar. Inter-iteration Scalar

Replacement Using Array SSA Form. In Compiler Construction, pages
40–60. Springer, 2014.

[16] X. Tian, R. Xu, Y. Yan, S. Chandrasekaran, D. Eachempati, and
B. Chapman. Compiler transformation of nested loops for general
purpose gpus. Concurrency and Computation: Practice and Experience,
28(2):537–556, 2016. cpe.3648.

[17] X. Tian, R. Xu, Y. Yan, Z. Yun, S. Chandrasekaran, and B. Chapman.
Languages and Compilers for Parallel Computing: 26th International
Workshop, LCPC 2013, San Jose, CA, USA, September 25–27, 2013.
Revised Selected Papers, chapter Compiling a High-Level Directive-
Based Programming Model for GPGPUs, pages 105–120. Springer
International Publishing, Cham, 2014.

[18] V. Volkov. Better performance at lower occupancy. In Proceedings of
the GPU Technology Conference, GTC’10, 2010.

[19] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos. Demystifying gpu microarchitecture through
microbenchmarking. In Performance Analysis of Systems & Software
(ISPASS), 2010 IEEE International Symposium on, pages 235–246.
IEEE, 2010.

[20] R. Xu, X. Tian, S. Chandrasekaran, Y. Yan, and B. Chapman. Nas
parallel benchmarks for gpgpus using a directive-based programming
model. In Languages and Compilers for Parallel Computing, pages
67–81. Springer, 2014.

581581581

