
A Validation Testsuite for OpenACC 1.0

Cheng Wang†*, Rengan Xu†*, Sunita Chandrasekaran†, Barbara Chapman†, Oscar Hernandez‡
†Department of Computer Science, University of Houston, Houston, TX, USA

Email: {cwang35,uhxrg,sunita,chapman}@cs.uh.edu
‡Computer Science and Mathematics Division, Oak Ridge National Laboratory

Email: oscar@ornl.gov

Abstract—Directive-based programming models provide high-
level of abstraction thus hiding complex low-level details of the
underlying hardware from the programmer. One such model is
OpenACC that is also a portable programming model allowing
programmers to write applications that offload portions of work
from a host CPU to an attached accelerator (GPU or a similar
device). The model is gaining popularity and being used for
accelerating many types of applications, ranging from molecular
dynamics codes to particle physics models. It is critical to
evaluate the correctness of the OpenACC implementations and
determine its conformance to the specification. In this paper, we
present a robust and scalable testing infrastructure that serves
this purpose. We worked very closely with three main vendors
that offer compiler support for OpenACC and assisted them in
identifying and resolving compiler bugs helping them improve
the quality of their compilers. The testsuite also aims to identify
and resolve ambiguities within the OpenACC specification. This
testsuite has been integrated into the harness infrastructure of
the TITAN machine at Oak Ridge National Lab and is being
used for production. The testsuite consists of test cases for all
the directives and clauses of OpenACC, both for C and Fortran
languages. The testsuite discussed in this paper focuses on the
OpenACC 1.0 feature set. The framework of the testsuite is robust
enough to create test cases for 2.0 and future releases. This work
is in progress.

Keywords-Validation; OpenACC; Compiler

I. INTRODUCTION

Recent years have seen a rise of massively-parallel super-

computing systems that are based on heterogeneous architec-

tures combining multicore CPUs with accelerators, such as

General-Purpose Graphic Processing Units (GPGPUs), Accel-

erated Processing Units (APUs), and Many Integrated Cores

(MIC). While such systems offer a promising performance

with reasonable power consumption, programming accelera-

tors in an efficient manner is still a challenge. The existing

low-level APIs such as CUDA and OpenCL usually require

users to be expert programmers and restructure the code

largely. Optimized kernels are written that are usually coupled

with specific devices. This leads to a less productive and more

error prone software development process that is challenging

to be adopted by the rapidly growing HPC market.

Recent approaches to program accelerators include

directive-based, high-level programming models for

accelerators. It allows the users to insert non-executable

pragmas and guide the compiler to handle low-level

*Equal contribution by the first two authors.

complexities of the system. The major advantage of

the directive-based approach is that it offers a high-

level programming abstraction thus simplifying the code

maintenance and improving productivity. There are a number

of related efforts that includes PGI Accelerator [1], HMPP

directives [2], hiCUDA [3], and so on. As they offer different

feature sets, the code portability therefore becomes a major

issue. As a joint standardization between CAPS, CRAY, PGI

and NVIDIA, OpenACC [4] was first released in November

2011, which aims to provide a directive-based portable

programming model for accelerators. By using OpenACC,

it allows the users to maintain a single code base that is

compatible with various compilers, while on the other hand,

the code is also portable across different possible types of

platforms.

Different compiler developers may interpret a given spec-

ification differently leading to more than one way of imple-

menting a given construct. Ambiguities in the specification

could be one of the reasons. Another reason could be that the

current implementation is based off of an implementation of

a similar construct’s functionality, yet not identical. It is quite

common to encounter these circumstances especially when the

specification and implementation of a standard is evolving.

As a motivational example, the OpenACC execution model

defines gang/worker/vector clauses to specify differ-

ent levels of parallelism on accelerators. They usually oc-

cur in a specific order and choosing different values in

the clause will have a significant impact on the applica-

tion’s performance. For instance, they may correspond to

the block/warp/threads respectively from the perspec-

tive of the CUDA model. However, the mapping is totally

implementation-dependent and can give rise to various possi-

ble combinations.

For instance, Figure 1 shows a code snippet pointing out an

ambiguity in the OpenACC 1.0 specification. A worker loop

should usually occur inside a gang loop. But can we allow

a worker loop without an outer gang loop? For instance, if

the number of gangs is known to be equal to 1, then there

is no need for a gang loop. In addition, if the purpose of the

worker loop is to initialize data that is local to the gang, the

outer gang loop is not needed. The specification does not state

if this option is acceptable or otherwise. Hence upon executing

this option, we observed different results generated by different

compilers leading to inconsistency in compiler behaviors. This

2014 IEEE 28th International Parallel & Distributed Processing Symposium Workshops

978-1-4799-4116-2/14 $31.00 © 2014 IEEE

DOI 10.1109/IPDPSW.2014.158

1407

#pragma acc parallel
{

#pragma acc loop worker
for(i=0; i<N; i++) {

...
}

}

Fig. 1. An example of ambiguity in the OpenACC specification: can we
allow a worker loop without an outer gang loop?

also led to wider performance gaps while comparing different

compiler results.

In this paper we propose an OpenACC compiler validation

testsuite and infrastructure that is used to validate and ver-

ify different OpenACC compiler implementations for confor-

mance, correctness and completeness. The testsuite consists of

two parts: test codes and test infrastructure. We have ensured

that the design of each of the test case is unique. To create

an unique interpretation, single generated test code must test

for only one OpenACC feature (e.g. async). The test code

is written based on template, i.e., a test code is written fol-

lowing an html syntax structure that includes the OpenACC

directive/clause to be tested. The test infrastructure written by

the perl script will then be used to parse the template and

automatically generate the associated test codes. The use of

template-based test has several advantages. First of all, it only

needs minimum efforts to develop the completed test code. As

a result, developers only need to focus on designing the test

cases instead of redundantly writing the entire test programs

including the main function and input/output every time. The

generated test code is a complete and standalone C/Fortran

code, i.e., it could be compiled by any OpenACC compiler. A

test harness will then compile the program, run the executable,

check for the results and generate reports. To provide a

confidence level for its correctness, the test infrastructure

also generates a set of corresponding cross-test programs

along with the feature tests. A bug report is generated that

qualitatively and quantitatively analyzes features that are being

tested. The infrastructure is extensible enough to accommodate

newer features of the specification as and when the standard

evolves. This testsuite has been integrated into the harness

infrastructure of the TITAN machine at Oak Ridge National

Lab and is being used for production.

The tests are generated in the form of a tree structure: it

begins by covering OpenACC directives followed by clauses

belonging to those directives, as well as the runtime routines

and environment variables. Currently it covers the OpenACC

1.0 feature set. Although this paper only focuses on the tests

for OpenACC 1.0, at the time of writing, OpenACC 2.0 was

released. We are in the process of writing test codes for the

newer features added to 2.0.

In order to make this effort successful, we have been

collaborating with vendors, NVIDIA/PGI, CAPS and Cray

since the inception of the standard. We work very closely with

the vendor team. We identify and report bugs found in their

OpenACC implementations. The vendors fix them and inform

us when a newer version of the compiler is released. We

then verify if the issues were resolved. We receive feedback

not only from the vendors but also from the users. The

benefit here is two-fold. The feedback helps us to improve the

quality of the test cases and at the same time validate more

thoroughly conformance of the features to the standard. We

observed that bugs resulted typically from either implementing

certain complex directives such as reduction or due to

misinterpretation of the specification.

This paper is written in a manner that we do not simply

report about the bugs but we also share our experiences in

creating and constructing test cases. We also discuss about the

design of a robust infrastructure and the challenges that came

along the way. The contributions made in this paper with joint

effort from vendors and users are:

Primarily our testsuite is able to assist compiler developers

to validate their compiler’s conformance to the specification.

In addition, our testsuite is especially important to OpenACC

users as we observed that for most of the time compilers

just emit wrong code bugs: the bugs that cause compilers to

generate wrong results in silence without a verbose alarming

information. Secondly, at times results generated from differ-

ent compilers differ from each other, these are not due to

the bugs in the compilers, but due to the ambiguities in the

specification or in other words different interpretations of the

specification by different compiler developers. This is quite

the case when the specification is relatively new and evolving.

Our aim was to capture such cases during the process. To our

delight, most of the ambiguities we reported were resolved in

OpenACC 2.0.

The rest of paper is organized as follows: Section II briefly

gives an overview of the OpenACC programming model and

the feature set. In section III, we explain the design of the

validation testsuite. We demonstrate several typical test cases

in Section IV. Section V elaborates how our validation suite

evaluates the OpenACC compilers. Section VII shows our

suite being currently used to validate the functionality of the

programming environment of Titan. In Section VIII we discuss

some of the related works to this effort. Section IX concludes

our work.

II. OVERVIEW OF OPENACC PROGRAMMING MODEL

OpenACC is an emerging standard for programming accel-

erator boards in conjunction with a host CPU, which could be

a multicore platform. It is based on the use of pragmas or

directives that allow the application developers to mark

regions of code for acceleration in a vendor-neutral manner.

It builds on top of prior efforts by several vendors (notably

PGI and CAPS Enterprise) to provide parallel programming

interface for heterogeneous systems, with a particular empha-

sis on platforms that are comprised of multicore processors

as well as GPUs. Among others, OpenACC is intended for

use on the nodes of large-scale platforms such as the Titan

system at ORNL, where CPUs and NVIDIA GPUs are used

1408

in concert to solve some of the nations most urgent scientific

problems.

Recently OpenACC 2.0 [5] was ratified. Late last year,

Cray has introduced new OpenACC 2.0 support for directives-

based programming of accelerators and coprocessors in Cray

supercomputers [6]. PGI and CAPS will be soon introducing

support for 2.0 in their compilers.

The OpenACC feature set includes pragmas, or directives,

that can be used in conjunction with C, C++ and Fortran

code to program accelerator boards. OpenACC can work with

OpenMP to provide a portable programming interface that

addresses the parallelism in a shared memory multicore system

as well as accelerators. A key element of the interface is

the parallel construct that launches gangs that will execute

in parallel. Each of the gangs may support multiple workers

that execute vector or SIMD constructs. A variety of clauses

are provided that enables conditional execution, controls the

number of threads, specifies the scope of the data accessed in

the accelerator parallel region and determines if the host CPU

should wait for the region to complete before proceeding with

other work.

Suitable placement of data and careful management of

required data transfer between host and accelerator is critical

for application performance on the emerging heterogeneous

platforms. Accordingly, there are a variety of features in Ope-

nACC that enables the application developer to allocate data

and determine whether data needs to be transferred between

the configured devices. The features also enable control this

transfer, including the values to be updated on the host/accel-

erator by copying current data values on the accelerator/host,

respectively. These features are complemented by a set of

library routines to obtain device information or set device

types, test for completion of asynchronous activities, as well

as a few environment variables to identify the devices that will

be used.

OpenACC standard gives great flexibility to the com-

piler implementation. For instance, different compilers can

have different interpretation of OpenACC three level paral-

lelism: coarse grain parallelism “gang”, fine grain parallelism

“worker” and vector parallelism “vector”. On an NVIDIA

GPU, PGI maps each gang to a thread block, and vector to

threads in a block and it just ignores worker; CAPS maps gang

to the x-dimension of a grid block, worker to the y-dimension

of a thread block, and vector to the x-dimension of a thread

block; Cray maps each gang to a thread block, worker to warp

and vector to SIMT group of threads.

III. THE TEST INFRASTRUCTURE DESIGN

In this section, we discuss the design and implementation

about our testsuite infrastructure. The primary goal of our val-

idation suite is to provide a set of short feature tests wherever

possible and check if the directive and the clauses associated

that are being tested have been implemented correctly. For

example, we test the parallel construct and its corre-

sponding clauses (e.g. async, num gangs, private,
firstprivate, and so on).

The testsuite will check if the directive passed or failed by

verifying the result with a pre-calculated value. If the values

do not match, it implies that there is an implementation issue.

We define these tests as functional tests. An important point to

note is that a false positive can be an output with the functional

tests. This is because there might be more than one directive

that is being used at a given point of time.

For instance, figure 2(a) shows a simplified test case for

loop directive. It partitions and assigns the loop iterations to

the number of gangs specified in the parallel construct.

So in this case each element of the array A is incremented

exactly once. Since the loop directive must be used within

the parallel construct, while the functional test for the

loop feature may pass with an expected result, that may

simply be due to the use of the parallel construct. To

#pragma acc parallel num_gangs(10)
{

#pragma acc loop
for(i=0; i<n; i++)

A[i] = A[i] + 1;
}

(a) Functional test

#pragma acc parallel num_gangs(10)
{

/ / l o op d i r e c t i v e i s removed
for(i=0; i<n; i++)

A[i] = A[i] + 1;
}

(b) Cross test

Fig. 2. Test case for the loop directive

gain more confidence of the test result, we designed a deeper

test methodology, namely cross test. This test will help in

validating “only” the directive under consideration. The basic

idea is that if we remove the directive being tested from the

test code, the cross test should yield an “incorrect” result. For

instance, in the figure 2(b), #pragma acc loop is simply

removed for the cross test. As a result, each element should

be incremented by each gang (so in total 10 times). On the

other hand, if the result in the cross test is still the same as

the functional test, it indicates that the directive being tested

does not take any effect. The result will be reported and the

functional test will be re-designed. In some instances, simply

by removing the directive being tested will not work. We

intentionally replace the directive being tested with another

one. For example, we can help validate firstprivate
clause by replacing firstprivate with a private clause

and check the impact on the result.

The test results are statistically analyzed and each test is

repeated multiple times. In order to estimate the probability

that a test passes accidentally we take the following approach:

if nf is the number of failed cross tests and M the total number

of iterations, the probability that the test will fail is p =
nf

M .

Thus the probability that an incorrect implementation passes

the test is pa = (1 − p)M , and the certainty of test is pc =
1− pa, i.e. the probability that a directive is validated. While

evaluating, if the probability is 100%, we conclude that the

test passed.

1409

In the current OpenACC validation testsuite, we have de-

signed more than 160 test cases covering the OpenACC C and

OpenACC Fortran feature set included in 1.0 version. These

test cases cover tests for directives, clauses, runtime library

routine, as well as environment variables. Each test has two

versions: functional test and cross test. We observed that one

of the challenges in constructing test cases for this scenario

is that if we implement each of these tests separately, the

entire testsuite will become ad-hoc, error-prone, and difficult

to maintain.

To improve the usability and extensibility, we also created

a test infrastructure to automate the test generation as well

as collect and analyze test results in qualitative and quan-

titative manner. Figure 3 shows the framework of the test

infrastructure. A test template is written following an html
syntax structure that includes the OpenACC directive/clause

to be tested. A perl script is used to parse the template

and automatically generate the associated test codes for both

functional and cross tests. These generated test codes are C or

Fortran programs that can be compilable by any OpenACC C

and Fortran compilers. As discussed above, first we perform

the functional test. If the feature passes the test, the feature will

need to undergo a deeper test, i.e. the cross test. If the feature

did not pass the functional test, a “failure” will be directly

reported to the result analyzer bypassing the necessity to do

the cross test. One of the advantages of using template-based

testing is that only one test base is needed for each of the

OpenACC features being validated and the infrastructure will

automatically generate the different test programs. In addition,

we only need to focus on developing the test cases instead of

redundantly writing the entire test codes every time. The major

features of the validation suite are as follows:

• Compiler configuration: User can set the configuration

details for the compiler implementation to be validated.

• Feature selection: User can choose to test the directives,

their clauses or any other feature of their choice at a given

point of time.

• Extensible test infrastructure: We implemented two

types of tests (i.e. functional and cross tests) for each of

the features defined in the specification. We generate the

source code by parsing the test template, compiling and

executing it by using the compiler whose implementation

needs to be validated. If it passes the functional test

successfully, we move to the next stage, i.e. execute the

cross test. In the event that the test fails to pass through

the functional test, a report is generated about the test’s

failure.

• Results: After conducting the tests, based on the statis-

tical analysis discussed earlier, user is informed about

the tests that passed. For the tests that failed, our in-

frastructure provides the possible reasons of failure such

as compilation error, incorrect results, time out and so

on. After all the tests are executed, a full report will

be generated demonstrating the result for each of the

features. We append the bug reports with code snippets

gangs_red = (int*)malloc(gangs*sizeof(int));
for(i=0; i<gangs; i++)

gangs_red[i] = 0;

#pragma acc parallel copy(gangs_red[0:gangs]) \
num_gangs(gangs) \
num_workers(workers)

{
#pragma acc loop gang
for(i=0; i<gangs; i++){

int to_reduct = 0;
#pragma acc loop worker reduction(+:to_reduct)
for(j=0; j<workers_load; j++)

to_reduct++;
gangs_red[i] = to_reduct;

}
}

error = 0;
for(i=0; i<gangs; i++){

if(gangs_red[i] != workers_load)
error++;

}
return (error == 0);

Fig. 4. Test case for parallel num_workers

for vendors’ convenience. We can generate the validation

results in any of the formats such as plain text, HTML

and CSV.

IV. DESIGN OF TEST CASES

In this section, we discuss the design ideas of the test cases

written. (Due to space constraints, we will discuss the design

ideas of a few of the test cases. The rest of the tests mostly

follows suit.)

A. Parallel and Kernels Construct

1) num gangs and num workers: The OpenACC

num_gangs and num_workers define the number

of gangs and workers that will execute the

parallel/kernels region. Certain compilers may

issue a compilation error, if the value that is used in

num_gangs or num_workers is not accessible at the

compilation time. Therefore we use a constant value for

our validation test purposes. To test num_gangs, we use

a variable with an initial value of 0 and perform reduction

by all gangs, finally we compare the value after reduction

with the preset value in num_gangs, to check if the value

was equal or not, i.e. if the test is passed or failed. To test

the num_workers clause, we set the number of gangs and

workers for each gang. A two-level nested loop is designed,

in which the outer loop is scheduled on all gangs and the

inner loop is scheduled on all workers of one gang as shown

in Figure 4. The worker-level loop performs a reduction, after

which we check for the correct value of reduction at every

gang.

2) private: The private clause is tested by creating a

two dimensional matrix. Each gang writes data to each row

of the matrix and all workers of one gang writes data to all

the columns of that row. The starting row of the matrix is to

write a private variable to each gang. There is no way to get

the id of each gang. The private value of the variable will be

1410

�������	�
�
�����
���

��������
�
����

�
��
���

��

�����������	
�������
������
�	�
��������������������
��������
������
�	
�������
����
�����	
����������������
���
��������
����
�����	

�������������
��������������	
�������������������������� ��!"
��������������
��������������	
�������������
�	
�����������������	
����#���������$
����#���������%
������������������	
��&&&
������������	
�����'���������������$
�����'���������������%
�������������	
��&&&
��������������
�	
������������	

(�����
��)�������������&*)
��������������������������������� ��!"
+
����#���������$
����#���������%��
,
���������"
+
��&&&
����������������������������!����"-
��&&&
,

	����
����

(�����
��)�������������&*)
��������������������������������������� ��!"
+
����'���������������$
����'���������������%��
,
���������"
+
��&&&
����������������������������������!����"-
��&&&
,

������
��
�����

�����	
���
�����
��

Fig. 3. Framework of the test infrastructure (in an example of kernels copyin)

N = 1000;
#pragma acc data copy(C[0:N]) copyin(A[0:N], B[0:N])
{

sum = 1;
for(int m=0; m<N; m++){

#pragma acc parallel loop if (sum < N)
for(int j=0; j<N; j++){

C[j] += A[j] + B[j];
}
sum += m;

}
}
for(i=0; i<N; i++){

if(C[i] != 46*(A[i] + B[i]))
error++;

}
return (error == 0);

Fig. 5. Test case for parallel if

the same for all gangs. On the host side, we check whether

only the rows starting from that row are written and the values

written are correct.

3) if: The test for the if clause is shown in Figure 5. In our

test case, since the expression in the “if” clause may change

at runtime, it is hard to determine the value at the compilation

time. As shown in the code, N equals 1000, the sum is the

reduction of m. The maximum value for m that satisfies the

“if” condition is 44. At runtime, when the “if” condition is

evaluated to false, the parallel region will stop running on the

device. At the time when the parallel region stops running, the

outer loop runs 46 times on the device.

B. Data Construct

Since most of the accelerators have discrete memory, the

data movement between the host and the device is very

important. The data construct can either be used as a

standalone construct, or could be combined with parallel
or kernels construct. Therefore we need to write test cases

for all possible combinations. One of the clauses that this

construct uses is the if clause, “if” condition being true, we

can assume that all data copy operations are occurring. To

validate if this is the case, we perform cross test where the

“if” condition is false and then check if the result is different

to that of the “if” condition when it was actually true.
1) data copy: The test case of copy clause is shown in

Figure 6. The flag is initially set to HOST. This test checks

for two things: first the array A and B should be copied to

the device memory and array C copied to the host memory.

Secondly, in case the code block inside the parallel region

is executed on the host only, then the value of the flag will

change to DEVICE, leading to an incorrect result. This is the

functional test. To perform cross test, the flag is set to DEVICE

unlike for the functional test where we set the flag to HOST.
2) data copyin: To test data copyin, we create some

arrays with initial values and then copy them to the device.

These arrays will do some mathematical operations inside the

device to destroy the original initial values, but they will not

be copied back to the host. We check the values of these arrays

on the host after the operations are performed on the device

or accelerator region. The values of these arrays should be

exactly the same as the initial values, if not we conclude that

there is an issue with the implementation of copyin clause.
3) data copyout: To test data copyout, we use two

tests. The first test assigns values to a device copy array and

then copies out the array to the host memory. We then check

the values on the host to check if the data has been really

transferred. The second test does nothing to the device copy

array but we still copy it out to the host. As a result, the

array values are non-deterministic because the device had just

allocated memory to that array but didn’t assign any values to

it. Then we compare the actual undetermined values with the

host’s initially determined values, in order to check if they are

really inconsistent.
4) data create and present-related clauses: To avoid exces-

sive data transfer some data needs to be allowed to reside on

the device. The present clause tells the implementation that

on a non-shared memory device, the variables or arrays in the

var-list are already present in the device memory and data need

not be transferred to the device again. Data create can

perform some operations on the data array that is only on the

device side. The data is neither copied in nor copied out. After

1411

flag= HOST;
for(i=0; i<N; i++){

A[i]=i; B[i]=i;
known_C[i]=A[i]+B[i]+DEVICE;

}
#pragma acc data create(flag) copy(A[0:N],B[0:N],C[0:N])
{

#pragma acc parallel
{

flag = DEVICE;
#pragma acc loop
for(j=0; j<N; j++)

C[j] = A[j]+B[j]+flag;
}

}
for(i=0; i<N; i++){

if((C[i]!=known_C[i]) || (flag!=HOST))
error++;

}
return (error==0);

Fig. 6. Test case for data copy

the computations on the accelerator region, the array value

should still be the same as the initial value on the host even if

the value has changed during computation on the device. We

consider two accelerator regions (a)parallel or (b)kernel
region. In the first region we initialize data using create
clause and we reuse the same in the next parallel region

using the present clause. Finally we check if the final data

values are the same as the pre-calculated values to verify the

correctness of the implementation of present clause. The

present clause can also be combined with other data clauses

like copy, copyin and copyout and the corresponding

clauses are pcopy, pcopyin and pcopyout. The idea of

our design is to be able to validate clauses that can be used

in combination.

5) data deviceptr: The deviceptr clause means that the

pointers specified in its list are device pointers, so the data need

not to be allocated or moved between the host and the device

for this pointer. The test for this clause uses the runtime library

routine acc malloc(). The pointer returned by this routine is

declared as deviceptr and we perform some computations

to the data pointed by this pointer. Finally we copy out the data

from this pointer to the host and verify its values. acc free()
frees the memory of the data.

C. Loop Construct

1) independent: The loop independent clause tells

the compiler that all the iterations of the loop under consid-

eration are data-independent with respect to each other. To

validate this, we write a loop that consists of loop-carried

dependencies among all iterations, i.e. each iteration depends

on its previous iteration. If we use the independent clause,

the result should be incorrect thus informing the compiler that

there are dependencies within the loop. We also write a test

case to check for the case when the loop is really independent.

2) seq: The clause seq indicates that the following loop

will be executed in sequence. We use two variables last i
and is larger to test this clause. last i records the previous

iteration number and is larger checks whether the current

iteration number is larger than the previous one. In our test,

the loop increments by 1, so in each iteration we evaluate the

statement is larger = ((i − last i) == 1) & &is larger.

The initial value of is larger is 1 which means it is true. After

finishing all the iterations, is larger is copied to the host to

check if the value is still 1.

3) collapse: The collapse clause is used to specify

how many tightly nested loops are associated with the loop
construct. If the collapse clause is not present, only the im-

mediately following loop is associated with the loop directive.

Our test uses a two-level tightly nested loop and applies the

loop collapse(2) seq before the outer loop. Inside the

inner loop, the test approach of seq clause is used to verify

that all the iterations are executed sequentially.

4) reduction: The reduction test covers combinations of

different types of data (e.g. int, float and double) and different

types of reduction operations (+, *, max, min, &&, ||, &, |, ∧).

Figure 7 shows the test case for floating-point addition reduc-

N = 20; fsum = 0;
ft = 0.5; fpt = 1;
frounding_error = 1.E-9;
for(int i=0; i<N; i++){

fpt *= ft;
}
fknown_sum = (1-fpt)/(1-ft);

#pragma acc kernels loop reduction(+:fsum)
for (i=0; i<N; i++)

fsum += powf(ft,i);

if(fabsf(fsum-fknown_sum) > frounding_error)
error++;

return (error == 0);

Fig. 7. Test for loop reduction addition operation for float data type

tion, which is tested by calculating
∑N−1

i=0 fti and comparing

it with the known result (1−ftN)/(1−ft). When comparing

two different floating-point values, they are considered to be

the same as long as their difference is less than a rounding

error (1.0E − 9).

D. Update Construct

OpenACC update construct provides a mechanism to

synchronize the device copy and host copy data at a specific

location inside the data region. It includes update host and

update device directives. For the update host test,

some data is transferred to the device using copyin clause.

Calculations are performed and data is transferred back to the

host using the update host directive rather than copyout
clause. On the host side we check for the correctness of

this data. For the update device test, we use update
device and copyout for the same data to verify if this data

is correctly copied to the device or not. We also use copyin
and update device for the same data to verify if the data

is only on the device and cannot be copied back to the host.

E. Host Data Construct

The host_data construct makes the address of the device

data available on the host. This construct has only one clause

1412

called use_device. This clause tells the compiler to use

the device address of data available in the host code. We

can use some optimized procedures written in a low-level

API (e.g. CUDA) by using host_data. We combine the

host_data with the deviceptr test since host_data
provides a device pointer while deviceptr provides a way

to use it. Inside the host_data construct we call a function

whose parameter is specified by the use_device clause. In

the called function, some calculations are performed on the

data. Finally we use the copyout clause to copy the data to

the host and verify its correctness.

V. EVALUATION

Our test bed is a heterogeneous system consisting of 16

cores Intel Xeon x86 64 CPU with 32GB main memory, and

an NVIDIA Kepler GPU card (K20). Before we get into the

details of the evaluation process, it is essential to distinguish

between errors that manifest at compile time and those that

happen at runtime. The compile-time errors are assertion

violations or other internal compilation errors. For instance,

this can happen if the user uses an OpenACC feature that is not

yet supported by the compiler. The compile-time error can be

easily captured because the compilation process will terminate

and will also fail to generate the executable files. The runtime
errors include the generation of an incorrect result; a code

crash or if the code executes forever. Those errors are more

vicious since most of the time, the programmers are unaware

that the compilers are generating incorrect results.

A. Quantitative Comparison of CAPS, PGI and Cray Versions

Figures 8(a), 8(b), 8(c) shows plots of both C and Fortran

OpenACC compilers along with number of bugs discovered in

each compiler version. We tabulate the results in the Table I

that shows number of bugs identified in different versions of

each compiler. We notice that the number of bugs somewhat

decreased with every newer version of the compiler released

demonstrating improved compiler quality.

Figure 8(a) shows the plots of how CAPS compiler evolved

over a period of time. We see that the pass rates for CAPS

3.0.x and CAPS 3.1.x are much lower than 3.2.x and 3.3.x

versions. This is because versions 3.0.x were beta versions that

were not released for public use. CAPS 3.1.x shows a lower

pass rate since the declare directives had not passed the test

scenarios. Probably due to priority given to other important

directives such as data, kernels, loop, parallel
and update. Moreover one could simply use data direc-

tives could be used instead of declare directives. Figure 8(b)

shows the bugs discovered with PGI’s OpenACC compiler and

how they were rectified over a period of time. PGI began to

provide support for OpenACC from version 12.6 onwards. We

see that version 12.8 onwards shows better quality. The pass

rate in 13.2 is not as good as 12.10 because 13.x releases

were reorganized to support multiple targets. However we see

some improvement from version 13.4 onwards. Most of the

tests that do not pass were mainly due to the async clause

that we will be discuss in the next section. Figure 8(c) shows

the plots for Cray compiler. The bar plots mostly shows no

variation, we discuss probable reasons in the next section.

B. Analysis of some bugs identified

In this section, we discuss some of the qualitative and

quantitative collection of results about the bugs we found in

the OpenACC compilers. A bug can be due to a number of

reasons; non-conformance to the specification, compilation,

runtime or validation errors.

CAPS: Variable expressions inside gang/worker/vec-
tor: OpenACC uses num_gangs, num_workers and

vector_length clauses to specify the number of gangs,

workers and vector threads that are created to execute on

the accelerator. For instance, in an accelerator parallel
region, num_gangs(scalar-integer-expression)
specifies the number of gangs that will execute the region

in parallel. The code snippet in figure 9 shows a simplified

test case for num_gangs clause allowed on the parallel
construct. The basic idea is to specify the number of gang

threads to update a shared counter, gang num, and check

whether the updated value equals the number of gangs that

we set. However, we found that in CAPS compiler ver-

sions earlier to 3.1.0, only constant expression inside the

num_gangs/num_workers/vector_length were sup-

ported, this bug was fixed in the later versions of compiler

releases.

int gangs = 8;
int known_gang_num = 8;
int gang_num = 0;

#pragma acc parallel num_gangs(8) reduction(+:gang_num) /∗
working ∗ /

#pragma acc parallel num_gangs(gangs) reduction(+:gang_num)
/∗ n o t working ∗ /

{
gang_num++;

}

return (gang_num == known_gang_num);

Fig. 9. Test case for num_gangs on parallel construct.

PGI: Asynchronous tests: The acc_async_test()
routine is to test the completion of all asynchronous ac-

tivities. Figure 10 shows a code snippet that tests for

acc_async_test(). The basic idea is fairly straightfor-

ward: we asynchronously execute a large kernel region on

the device and immediately test to check for finished exe-

cution. If the asynchronous activities are not completed, 0 is

expected to be returned. We then added a wait construct

to guarantee that the asynchronous activities have finished

execution, and execute the test for acc_async_test()
again. At this point a nonzero is expected to be returned.

However, we found that PGI 13.x C compilers always re-

turned the value -1 that is what has been set as the ini-

tial value. PGI has the same issue with other asynchronous

tests such as kernels async, parallel async, wait,

acc_async_wait(), acc_async_wait_all() and

acc_async_test_all(). Although PGI compiler has the

1413

 0

 20

 40

 60

 80

 100

3.0.7 3.0.8 3.1.0 3.2.3 3.2.4 3.3.0 3.3.3 3.3.4

Pa
ss

 R
at

e(
%

)

CAPS version

C Test
Fortran Test

(a) CAPS

 40

 50

 60

 70

 80

 90

 100

12.6 12.8 12.9 12.10 13.2 13.4 13.6 13.8

Pa
ss

 R
at

e(
%

)

PGI version

C Test
Fortran Test

(b) PGI

 40

 50

 60

 70

 80

 90

 100

8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.2.0

Pa
ss

 R
at

e(
%

)

Cray version

C Test
Fortran Test

(c) CRAY

Fig. 8. Test pass rate for different compilers and their versions

TABLE I
BUGS IDENTIFIED IN DIFFERENT COMPILERS, F: FORTRAN

Compiler CAPS
Version 3.0.7 3.0.8 3.1.0 3.2.3 3.2.4 3.3.0 3.3.3 3.3.4

Language C F C F C F C F C F C F C F C F
Bugs 36 32 24 70 20 15 1 1 1 1 1 0 0 0 0 0

Compiler PGI
Version 12.6 12.8 12.9 12.10 13.2 13.4 13.6 13.8

Language C F C F C F C F C F C F C F C F
Bugs 8 14 8 14 7 14 6 14 6 14 5 13 5 13 5 13

Compiler CRAY
Version 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.8 8.2.0

Language C F C F C F C F C F C F C F C F
Bugs 16 6 16 6 16 6 16 6 16 6 16 5 16 5 16 5

same issue with these tests, it can pass all of them if the data

clauses are moved out using data directive. So it seems that

the async clause used with parallel or kernel directive

will block the asynchronous activities if they are used together.

int is_sync = -1;
#pragma acc kernels copyin(A[0:N], B[0:N]) copy(C[0:N])

async(tag)
for(i=0; i<N; i++)

C[i] = A[i] + B[i];

is_sync = acc_async_test(tag); / / s h o u l d be zero , s i n c e gpu
has n o t done t h e c o m p u t a t i o n .

#pragma acc wait(tag)

is_sync = acc_async_test(tag); / / s h o u l d be non−zero , s i n c e
t h e r e i s a ” b a r r i e r ” b e f o r e

Fig. 10. Test case for acc_async_test.

Cray: Data copy for scalar variables: In the test for copy
clause within the data construct, we check if the compilers

copy scalar variables besides copying array. For instance when

we copy a scalar variable from the device to the host, we set a

flag to 1 on the device and transfer the data back to the host,

but the scalar variable copy does not happen.

Cray compiler behavior: Cray compiler behaves little

differently to the other two vendor compilers. Cray performs

forward substitution on flag and at the compile time determines

that flag != HOST and the “if” statement is eliminated. A code

snippet is shown in Figure 6. Figure 11 shows a test that

ensures that the data in array B will only be copied out and not

copied in. We compare the value of array B on the host with

the pre-calculated values to ensure this happens. The initial

values of array B are randomly generated on the host. On the

device, we do not assign any values to the array B (as shown

in the code snippet), but we still copy values back to the host

as part of the testing process. The copied out values should be

different to that of the initial values. The Cray compiler detects

the dummy loop as a region where there is no computation

going on and deletes the full compute region. Hence the test

does not work as expected.

#pragma acc parallel copyout(B[0:N], C[0:N])
{

#pragma acc loop
for(j=0;j<N;j++)

C[j]=B[j]; / / dummy loop
}
for (i=0;i<N;i++)

sum+=B[i];

if(sum==known_sum)
error++;

Fig. 11. Cray’s compilation behavior on copyout clause

C. Other Interesting Observations

In this subsection, we also discuss several interesting ob-

servations in the OpenACC 1.0 specification we found in the

process of developing the testsuite. Most of the issues seem

to have been fixed in the OpenACC 2.0.

1414

acc_set_device_type(acc_device_not_host);
device_type = acc_get_device_type();
if(device_type != acc_device_not_host)

fprintf(stderr,"failed on acc_device_not_host\n");

acc_shutdown(acc_device_not_host);

Fig. 12. Test case for acc_set_device_type as
acc_device_not_host.

Device type: The OpenACC 1.0 specification

defines four types of devices: acc_device_none,

acc_device_default, acc_device_host and

acc_device_not_host, which tells the runtime what

type of device to use when executing an accelerator

parallel or kernels region. However, during our test for

acc_set_device_type as acc_device_not_host,

as is shown in Figure 12, we found that the real

device type returned is implementation-defined.

For instance, CAPS compiler 3.3.3 considers two

additional device types: acc_device_cuda and

acc_device_opencl. PGI version 13.4 considers

acc_device_nvidia, acc_device_radeon,

acc_device_xeonphi, acc_device_pgi_opencl
and acc_device_nvidia_opencl.

Although the device type name is not specified in the 1.0

specification, 2.0 appendix provides with some recommenda-

tions for the device type names for NVIDIA GPU, AMD GPU

and Intel Xeon Phi Coprocessor. Although they are not part of

the standard, they can make the implementations more easily

portable.

Default behavior: The OpenACC 1.0 specification defines

a set of data clauses (e.g., copy, copyin, copyout,

present, present_or_copy, etc.). However, if an array

referenced in the parallel construct does not appear in

any data clause, it will be treated as if it appeared in a

present_or_copy clause. However, the OpenACC 1.0

specification is still missing a default(list) clause,

which allows users to override the default behavior when data

is used in parallel or kernel region but does not appear

in the data clause. In addition, if present_or_copy is

the default clause used by the compiler, this may introduce

unnecessary data movement affecting performance.

In the OpenACC 2.0 specification, a new

default(none) clause is introduced. It tells the compiler

not to implicitly determine a data attribute for any variable,

but to require that all variables or arrays used in the compute

region do not have any predetermined data attributes.

Procedure calls: Most of the OpenACC compilers are yet

to support OpenACC runtime routines and the user-defined

routines inside a parallel/kernels region. Lacking such a feature

will significantly affect the structure of the OpenACC codes

and it is especially inconvenient for large programs.

The OpenACC 2.0 specification added a new routine
directive which is used to tell the compiler to compile a given

procedure inside a parallel/kernels region.

Data lifetime: OpenACC uses the data construct to allow

the programmers to manage the data lifetime on the device.

For example, the data copy(a[0:n]) will copy the array a from

host to device at the entry of a given code block, and copy it

out back to the host at the exit of the given code block. This

promotes the structured data lifetime, but not all data lifetime

are easily amenable to structured lifetime. Unstructured data

lifetime is quite common in large programs with multiple files,

where data may be copied into the device in one file while be

copied out to the host in another file.

OpenACC 2.0 adds two new directives, enter data and

exit data, which could be used to easily managed the

unstructured data lifetime.

Loop nesting: As discussed in Section I, OpenACC uses

gang/worker/vector clauses to specify different levels

of parallelism in the parallel/kernels region. Mapping

the loop nesting to different levels of parallelism may affect

the performance significantly. However, the OpenACC 1.0

specification does not specify the order in which the three

clauses can be used; different combinations can lead to differ-

ent performance results.

OpenACC 2.0 is more strict about loop nesting. The specifi-

cation says that gang loop must be outermost while vector
loop must be innermost. In addition, a gang (worker,
vector) loop cannot contain another gang (worker,
vector) loop unless within a nested parallel or

kernels region. A new added auto clause will instruct the

compilers to determine the best mapping mechanism.

VI. DISCUSSION

We cover the entire feature set of OpenACC 1.0 specifi-

cation. Our testsuite consists of over 160 test cases (both C

and Fortran). We maintain a tabular column to capture the

“pass” or “fail” against each feature implemented by the three

compilers. Due to space constraints, we have not included

the large table. From the plots in the evaluation section, it

is evident that our bug reports helped compiler developers fix

the bugs. The most recent releases of the compiler show an

increase in the quality (reduced number of bugs identified). We

are also confident that the bugs that have been identified are

critical requiring immediate attention, since some of these bugs

have also been rediscovered and reported by the application

developers from national labs.

Software Currently this OpenACC validation suite is under

active development by the members of the OpenACC commit-

tee. The suite is available for free to any OpenACC member.

New academic members can join for a trivial fee. Members

wishing to contribute code to the testsuite may do so under a

dual license scheme. One license will preserve the license used

by the contributor, the second OpenACC license will ensure

consistency in code version, and the running and reporting of

results. We welcome contributions.

VII. PRODUCTION USE

The OpenACC validation suite is being used to validate the

functionality of the programming environment of Titan. The

suite has been useful to test different OpenACC compilers

1415

Fig. 13. The OpenACC Validation Suite was used to validate the Titan
supercomputer

implementations and to track functionality improvements or

degradation over time. The suite runs on random nodes to

check functionality requirements of the nodes. It is also used

to test different software stacks, for example, to test the

translation of OpenACC to CUDA or OpenCL as shown in

Figure 13.

VIII. RELATED WORK

To the best of our knowledge, we are the first team to

develop a validation suite for OpenACC compilers. The ideas

for building the validation suite is adapted from our prior work

in [7] and [8].

Some of the other existing commercial test suites such

as [9]–[11] are primarily aimed to check for conformance

of C and Fortran standards. There are other related efforts

that discusses ways and means to detect compiler bugs;

not quite validate compilers’ conformance to a specification.

Csmith [12] is one such approach that performs a randomized

test-case generator hunting down compiler bugs using differ-

ential testing. The basic idea of randomized differential testing

is a black-box approach that automatically generates short test

cases that are compiled by various compilers. They run the

executable and compare the outputs. Such an approach is quite

effective to detecting compiler bugs but does not quite serve

our purpose since it is hard to automatically map a randomly

generated failed test to a bug that actually caused it. We could

therefore say that our approach is complementary to that of

Csmith’s approach.

IX. CONCLUSION AND FUTURE WORK

In this paper, we evaluate three commercial OpenACC

compilers that are being widely used for porting applications

to accelerators. We develop a validation suite that can be used

to check OpenACC implementations for conformance to the

standard. First, we define and create tests for each individual

item in the specification. Second, we have also developed

a check for each feature that is designed to test for correct

behavior of the implementation. Third, we also facilitate the

addition of newer tests, either to cover new features, or

test feature combinations, or to test different aspects of an

implementation. Fourth, we design cross-tests to increase the

confidence in the implementation correctness.

The coverage of tests can be widened by testing several

combinations of the features. However as one could imagine,

this cannot be a thoroughly complete task since there may be

several different permutations and combinations of features

co-existing with one another. We have begun to create test

cases for 2.0 feature set. We will also at some point soon

identify corner cases that are in general quite challenging to

be detected manually.

ACKNOWLEDGMENT

We are very grateful to NVIDIA/PGI (Duncan Poole, Yuan

Lin, Michael Wolfe, Brent Leback, Pat Brooks and Mathew

Colgrove), CAPS (Francois Bodin, Stephane Chauveau, Guil-

laume Poirier, Yann Mevel and their OpenACC support team),

Cray (James Beyer, CR Schult, David Oehmke) and other Ope-

nACC users including Oscar Hernandez, Jean-Charles R, Jeff

Poznanovic, Jeff Vetter, Seeyong Lee) for their valuable inputs

without which this project could not have been successful. We

also want to thank Mike Brim for helping us integrate the

OpenACC validation suite to the harness suite of Titan.

REFERENCES

[1] “PGI Fortran & C Accelerator Compilers and Programming Model,”
http://www.pgroup.com/lit/pgi whitepaper accpre.pdf.

[2] C. Enterprise, “HMPP: A Hybrid Multicore Parallel Programming
Platform,” http://www.caps-entreprise.com/en/documentation/caps
hmpp product brief.pdf.

[3] T. D. Han and T. S. Abdelrahman, “hiCUDA: High-Level GPGPU
Programming,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, pp. 78–90, 2011.

[4] “The OpenACC Application Programming Interface,” http://www.
openacc-standard.org, Novermber 2011.

[5] “The OpenACC Application Programming Interface, 2.0,” http://www.
openacc-standard.org/node/297, Novermber 2011.

[6] “Cray enhances coprocessor and accelerator sup-
port for openacc 2.0,” http://insidehpc.com/2013/10/08/
cray-enhances-coprocessor-accelerator-programming-support-openacc-2-0/,

October 2013.
[7] M. Müller and P. Neytchev, “An OpenMP Validation Suite,” in Fifth

European Workshop on OpenMP, Aachen University, Germany, 2003.
[8] C. Wang, S. Chandrasekaran, and B. Chapman, “An OpenMP 3.1

Validation Testsuite,” OpenMP in a Heterogeneous World, pp. 237–249,
2012.

[9] ACE Associated Computer Experts., “SuperTest C/C++ Compiler Test
and Validation Suite,” http://www.ace.nl/compiler/supertest.html.

[10] Perennial, Inc., “ACVS ANSI/ISO/FIPS-160 C Validation Suite, ver. 4.5,
Jan. 1998.” http://www.peren.com/pages/acvs\ set.htm.

[11] Plum Hall, Inc., “The Plum Hall Validation Suite for C.” http://www.
plumhall.com/stec.html.

[12] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and Understanding
Bugs in C Compilers,” SIGPLAN Not., vol. 46, no. 6, pp. 283–294, Jun.
2011. [Online]. Available: http://doi.acm.org/10.1145/1993316.1993532

1416

