
Implementing the OpenACC Data Model

Michael Wolfe

The Portland Group
Email: mwolfe@nvidia.com

Rengan Xu

Dell
Email: Rengan Xu@dell.com

Seyong Lee and Jungwon Kim

Oak Ridge National Laboratory
Email: {lees2, kimj}@ornl.gov

Sunita Chandrasekaran

University of Delaware
Email: schandra@udel.edu

Xiaonan Tian

The Portland Group
Email: datian@nvidia.com

Barbara Chapman

StonyBrook University
Email: barbara.chapman@stonybrook.edu

Abstract—Programming accelerators today usually requires
managing separate virtual and physical memories, such as
allocating space in and copying data between host and device
memories. The OpenACC API provides data directives and
clauses to control this behavior where it is required. This paper
describes how the data model is supported in current OpenACC
implementations, ranging from research compilers (OpenUH
and OpenARC) to a commercial compiler (the PGI OpenACC
compiler). This includes implementation of the data directives
and clauses, testing whether the data is already present on the
device, OpenCL support, managing asynchronous data trans-
fers and memory allocations, handling aliased data, reusing
device memory, managing partially present data, and support
for shared memory between host and device. Lastly, it also
discusses on-going work to manage large, complex dynamic
data structures.

I. INTRODUCTION

Compute accelerators have been used in high performance

computing for many years. Early accelerators were attached

array processors, such as from Floating Point Systems [1],

IBM [2] and others, often programmed as a subroutine
box. The main program would run on a minicomputer

or mainframe and would call a subroutine that would be

implemented on the array processor. The mechanics of

moving input data to the array processor memory, invoking

the array processor compute engine and bringing results back

were hidden in the highly tuned subroutine. More recent

compute accelerators include the Cell Processor [3] and

the Clearspeed accelerator card [4], each programmed with

language extensions.

Current compute accelerators include GPUs from

NVIDIA and AMD, many-core coprocessors from Intel [5],

digital signal processors (DSPs) from Texas Instruments

[6] and field-programmable gate arrays (FPGAs). As each

compute accelerator was introduced, a new programming

language or methodology was promoted as well: CUDA [7]

for NVIDIA GPUs, Brook+ [8] for AMD GPUs, a directive-

based offload model [9] for Intel many-core coprocessors,

low-level C and assembly programming for DSPs [10] as

used for embedded applications, and hardware description

languages for FPGAs.

High performance computing users demand a higher level

programming model and portability across a range of archi-

tectures. One answer to this demand was the development

of the OpenACC Application Programming Interface [11].

OpenACC uses directives, quite similar to the OpenMP API

and various other directive sets [12], [13], for the user to tell

the compiler what data to move and when to move it between

the host and device memories, and what computation to

perform on the accelerator and what to leave on the host.

With currently available accelerators, managing the data

movement is the first and perhaps the biggest bottleneck

in achieving good performance. Initial attempts to automat-

ically manage the data movement [13], [14], [15] worked

well in certain simple, stunt examples, but work uniformly

poorly in general, leading the developers of OpenACC to

allow the programmer to manage this manually.

As we look forward to the near and more distant future,

we see a range of architectures being developed with more

interesting memory architectures. OpenACC was initially

designed to work with accelerator devices that have their

own memory, as well as devices that share memory with the

host. Section II describes a range of memory architectures

that OpenACC is able to support. The OpenACC data model

describes what data gets moved or copied to the device mem-

ory or back to the host memory, and when that movement or

copy is done. Usually the data movement is controlled by

OpenACC data directives or clauses. Section III describes

the OpenACC data model in more detail. There are now

several commercial and research implementations of Ope-

nACC [16], [17], [18], [19], [20]. Section IV describes how

three current OpenACC compilers (PGI [16], OpenUH [20],

and OpenARC [19]) implement the present table, support

OpenCL devices, manage asynchronous data transfers, and

more. Section V describes the work on adding deep copy
behavior to OpenACC, which is needed to manage large,

complex dynamic data structures. Section VI evaluates the

present table and device memory management schemes of

the tested three OpenACC compilers. Finally, Section VII

summarizes the goals of this article.

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-0-7695-6149-3/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.85

662

2017 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5386-3408-0/17 $31.00 © 2017 IEEE

DOI 10.1109/IPDPSW.2017.85

662

�������

�	
�

�����	�

�	
�

�������

�	
�

�������

�	
�

�����
�

�	
�

�������

�	
�

��
�

��������������������� ����������������������

���������� ��!�������"� #���$���$���� ��!�������"�

��
�

Figure 1: Classic accelerator model: separate physical and

virtual memories.

II. TARGET MEMORY ARCHITECTURES

This section describes several system memory architec-

tures which OpenACC was designed to support. There are

other significant design issues in these systems, but here we

focus on the memories.

The classic accelerator memory architecture is shown

in Figure 1. A latency-optimized multicore appears on the

left, with a large coherent cache memory attached to a very

high capacity memory (HCM) (often 64GB or larger). An

accelerator composed of many throughput optimized cores

appears on the right, typically with much smaller cache

memory and attached to a much smaller (4GB-16GB) but

much higher bandwidth memory (HBM). Today’s accelera-

tors do not use paging in the HBM, so the amount of data

that can be mapped to the HBM is limited to its physical

size. The typical connection between the host and accelerator

today is through the PCI-express IO bus. To the multicore

hardware and operating system, the accelerator is an IO

device controlled by OS drivers. In the most limited case, the

multicore cannot access the HBM directly, and procedures

running on the accelerator cannot access the host memory

directly. To use the accelerator requires the program to

• allocate space in the HBM

• copy input data from the host memory to the HBM

• launch one or more procedures or kernels on the

accelerator to do the calculations

• copy results from the HBM back to the host memory

• deallocate the space in the HBM

The datapath between the host and the accelerator has

low bandwidth relative to the host or device memories, so

optimizing the program to minimize the frequency of data

transfers and amount of data transferred is key to good

performance. The OpenACC data directives and clauses

allow a programmer to perform this optimization.

Some systems use the same physical layout, but can

allocate memory in the HBM in such a way that it can be

mapped into the host virtual address space. This allows a

program to leave data in the HBM and allow both compute

engines, the multicore and accelerator, to access it directly.

There is a significant performance penalty for accesses from

the multicore, however. Not only must the data be transferred

over the relatively slow IO bus, it probably can’t be cached

in the multicore because the accelerator doesn’t participate

in the cache coherence protocol. This feature and the next are

sometimes called zero-copy memory, because the program

doesn’t need to explicitly copy the data from one memory

to the other. We call this feature zero-copy device memory.

This feature is difficult to use in OpenACC, because the

directive model doesn’t control memory allocation.

Other systems use the same physical layout, but can

allocate memory in the multicore memory such that it can

be accessed directly from the accelerator. This memory

must be allocated contiguously and pinned in the multicore

physical memory, so that it won’t get moved or replaced

by the operating system paging mechanism. As above, there

is a significant performance penalty for accesses from the

accelerator, because of the low IO bus latency. We call this

feature zero-copy host memory. This feature can potentially

be used in OpenACC.

Current NVIDIA GPUs support a shared address space

between the CPU and GPU, called CUDA Unified Memory.

When a program allocates managed memory using special

allocation routines, the runtime will allocate space in the

CPU memory as well as the HBM. When a compute kernel is

launched, the CUDA driver will move any managed memory

data from the CPU memory to the HBM and mark the CPU

pages as nonresident. This is necessary because the current

GPUs have no page fault detection hardware. A subsequent

CPU reference to managed memory space will trigger a page

fault, and the driver will bring that data back to the CPU

side. There are limitations on how this can be used, but some

OpenACC implementations are able to use this.

Future NVIDIA GPUs will have the same physical layout

as in Figure 1, but with a much higher bandwidth connection

between the accelerator and the multicore host. Not only

will the connection run at almost the same bandwidth as

the host memory interface, it will allow coherent accesses

from the accelerator to host memory and from the multicore

to the HBM. In particular, it will allow the accelerator

to access data in host memory without being specially

allocated, and without pinning the data, though there will

still be a performance penalty relative to data in the HBM

because of the bandwidth differences. Such a feature opens

new opportunities and challenges for optimizing OpenACC

programs, as we shall see. We call this design unified virtual
memory. Such a design may allow the runtime or operating

system to dynamically choose whether to move data between

the physical memories based on recent memory reference

patterns, or to replicate the data in both memories, if it is

read-only.

An alternative to the separate memories is exemplified by

the AMD Accelerator Processing Unit (APU). In this de-

sign, both latency-optimized cores and throughput-optimized

663663

�����%�

����

�������

����

�����	�

����

�	��

��
�����������������

��������
���������������

�
��&�
�&��
���������������

Figure 2: Single physical memory model: latency-optimized

and throughput-optimized cores on one processor.

���������������������

����������������������

#���$���$���� ��!�������"�

�	
�

Figure 3: Throughput only model: throughput-optimized

cores with both HCM and HBM.

cores are included on a single processor chip, both using

the same cache hierarchy and the same memory interface

to the host memory, as shown in Figure 2. This design has

several important advantages. Even if the operating system

and software doesn’t allow for the CPU cores and accelerator

cores to share data, the data copies between the host space

and accelerator space can be done at full memory bandwidth.

If the software does allow the different cores to share data

with the same addresses, then data need not be moved at all.

This is true shared memory and this simplifies programming

dramatically. However, this comes with its own performance

penalty. Since there is no HBM, all data accesses, even from

the throughput-optimized cores, will run at the much lower

host memory bandwidth. We call this design single physical
memory.

Another alternative is demonstrated by the latest Intel

Knights Landing Xeon Phi processor. Here, the processor

only has throughput-optimized cores, which connect directly

to both a high bandwidth memory and a high capacity

memory, as shown in Figure 3. If all the data fits into the

HBM, there is no problem, but this is unlikely. In general,

data must be moved or copied into the HBM when it is

being intensely used, and moved or copied back to the

host memory afterwards. The OpenACC data directives and

clauses can be used as hints to the implementation about

when data should be moved to the HBM and back. We call

this design throughput-only.

To complete the catalog, OpenACC can also be used

in a typical multicore configuration with no HBM and no

accelerator. In this case, an OpenACC implementation can

ignore most of the data directives and clauses, and generate

parallel code more or less like the a corresponding OpenMP

implementation. We call this design simply a multicore.

In each case, the programmer or the OpenACC implemen-

tation must decide whether and when to copy or move data

from the host memory to the HBM and back. We distinguish

between copying data and moving data. When copying data

from one memory to the other, say from the host memory to

the HBM, the original copy still exists in the host memory

and is accessible from the host. When moving data from

one memory to the other, the data only exists in the target

memory.

In some cases, the decision is easy. For the multicore and

single physical memory targets, there is no HBM and no data

movement. For the classic accelerator target, data must be

copied and the only decision is when. For other targets, some

or all data may be allocated and remain in host memory,

or may be allocated and remain in the HBM, or may be

copied or moved between them. In the throughput-only or

unified virtual memory targets, the system could use paging

hardware and operating system or driver software to decide

at runtime whether to move pages of data from one memory

to another, or could require the application or runtime to

explicitly move or copy data between the memories.

III. OPENACC DATA MODEL

The OpenACC execution model assumes that the program

starts execution on a host with one or more attached acceler-
ators. OpenACC has data clauses to tell the implementation

when to copy data from the host memory to the device

memory, assuming one exists. This section describes the

OpenACC data directives and clauses, and the expected

behavior on the various targets.

OpenACC has a structured data construct that allows a

program to tell the implementation when certain data needs

to be available on the device. The most important data clause
is the copy clause, which says that if a copy of the data is

allocated in device memory, that data must be initialized

with the existing values from host memory, and when the

device is done processing the data, the final values must be

copied back to host memory. Execution of a data construct

creates a data region, which is the dynamic range of the

construct. The data specified in the data construct clauses

will be available on the device over the whole data region,

including any procedures called within that region.

OpenACC also includes dynamic or unstructured data

lifetimes, with the enter data and exit data directives. The

enter data directive acts very like the entry to a structured

data construct, and the exit data directive acts very like the

exit from a structured data construct.

664664

#pragma acc data copy(a[0:n],b[0:n])
{

for(int i = 0; i < n; ++i) {
a[i] = ...

}
}

Figure 4: Structured data constructs.

For some targets, the data directives can be completely

ignored. For a multicore and single physical memory targets,

there is only one copy of the data and the same address is

used by host and accelerator cores (if there are accelerator

cores). For a classic accelerator, data must be allocated and

copied to and from device memory, since the accelerator

cores cannot access host memory. For zero-copy memory

(either type) or managed memory, the data needs to be

allocated in the proper way. OpenACC does not control the

memory allocation; the data could be static, global, local

to a procedure (on the stack), or dynamically allocated. We

will see some implementations that are experimenting with

managed memory. For unified virtual memory or throughput-
only targets, the OpenACC runtime will have to decide

whether to move the data to the HBM or leave it in the

larger main memory. We haven’t seen these systems yet,

and one could imagine an operating system module to detect

a high number of accesses to the main memory, and to

decide to move the data to the HBM without any input from

the application or runtime. Nevertheless, we expect to use

the OpenACC data clauses to prefetch data to the HBM.

However, currently there is no way to distinguish between a

data clause inserted for correctness on a classic accelerator
target and one inserted for performance tuning on a unified
virtual memory target.

When data copies must be made, both structured and

unstructured data directives are implemented using reference

counting. Each block of memory in device memory has

two reference counts, one for static data constructs and

one for dynamic data directives. When a data construct

or an enter data directive specifies some block of data

that must be allocated in device memory and is not yet

present, that data is created and the reference counts are

both initialized to zero. For entry to a data construct, the

static reference count for the data block is incremented,

while for an enter data directive, the dynamic reference

count is incremented. At exit from a data construct, the

static reference count is decremented, and at an exit data
construct, the dynamic reference count is decremented. In

either case, if both reference counts reach zero, the data is

then deallocated.

IV. THE IMPLEMENTATIONS

This article describes how the OpenACC data directives

are implemented in three compilers. OpenUH [21], [20]

is an open source, optimizing compiler suite for C, C++

and Fortran based on Open64, supporting a variety of

target architectures. OpenUH is developed and maintained

by the High Performance Computing Tools research group

at the University of Houston. See github.com/uhhpctools/

openuh-openacc for more information about OpenUH.

OpenARC [19] is an open source, extensible research

compiler framework based on Cetus [22], which performs

source-to-source translation from OpenACC C to CUD-

A/OpenCL, targeting various architectures from NVIDI-

A/AMD GPUs to Intel Xeon Phi Coprocessors and Altera

FPGAs. See ft.ornl.gov/research/openarc for more informa-

tion about OpenARC.

PGI provides commercial compilers for C++, C and

Fortran which include the OpenACC 2.0 directives, OpenMP

3.1 directives, and many other features [16]. The OpenACC

directives grew out of the PGI Accelerator directives which

were first introduced in 2008. See www.pgroup.com for

more information about the PGI compilers.

A. The Present Table

The present table is the key data structure in an OpenACC

runtime. The present table keeps track of what data is

available in device memory. It must be indexed by the host

address of the data. Variables names can’t be used since

they don’t persist when pointers are passed as arguments to

a routine, and an implementation can’t add information to a

pointer (fat pointer) since a user doesn’t necessarily compile

all the intermediate routines with the same compiler. The

only value that persists across all places where the data is

used is the address of the data. At a minimum, the present

table will return the corresponding device address for host

data. Table lookup should be fast in the common case.

1) PGI: The PGI OpenACC runtime uses a Red-Black

tree indexed by the host address range for the present table.

Since C and C++ programs often do pointer arithmetic and

Fortran programs often pass subarrays as arguments to other

routines, this implementation can accept any address in the

range of the data object and return the appropriate device

address. A Red-Black tree is a reasonably balanced binary

tree, so lookup, insert and delete operations take O(log n)
time. The table entry stores the start and end address of

the corresponding host data, the start address of the device

data, and the two reference counts. It may store additional

information to help with data inspection, such as data type

and filename or function name and line number where

the data was first created in device memory. PGI supports

multiple devices, with a separate table for each device. In

a multithreading environment, the runtime uses locks when

modifying or searching the table.

The latest PGI compiler has a feature to take advantage

of CUDA managed memory. For NVIDIA GPUs, the PGI

implementation supports a command line flag that will

replace C malloc calls, C calloc calls, C++ new invocations

665665

and Fortran allocate statements by versions that allocate

CUDA managed memory. The PGI runtime then uses the

CUDA API to test whether the host address in a data clause

lies in the managed memory region. If so, the runtime lets

the CUDA driver manage the data.

2) OpenUH: The OpenUH compiler uses hash tables for

the present table implementation. It maintains two hash ta-

bles: static and dynamic maintained by the compiler and the

runtime respectively. The static hash table is indexed by the

symbol table in the compiler. This table is used for structured

data constructs at compile-time. Within a structured data

region, there may be many compute regions typically sharing

data. The static hash table helps the compiler to save the

device address of the data once for all compute regions

within structured data constructs. The dynamic hash table

is maintained by the runtime. This table is used for data

regions at runtime and can be used for both structured data

region and unstructured data directives. Each entry in the

dynamic hash table includes the host address, device address

and the data size.

The OpenUH runtime maintains a region stack to track the

region chain and the new data created within each region.

The region stack can guarantee that the data list created

at the entry of a region (be it data or compute region)

will be freed at the exit of the same region. Figure 5a

shows an example OpenACC code and Figure 5b shows the

structure of the region stack. Whenever a new data region is

encountered, a region pointer is pushed into the region stack.

If the regions are not nested, then they are pushed into the

stack in sequence. All the newly created data in the region

level i are appended to a linked list and then inserted into

the dynamic hash table. The device memory is allocated for

these data and copied to the device as necessary (for copy
and copyin clauses). At the exit of a region, the runtime

will pop the region pointer from the region stack, copy the

data from the device address to the host address (for copy
and copyout clauses) and free the data list created in that

region.

For partially present data, OpenUH allocates the device

memory for the whole array rather than the partial array

size, so for the same data, the host copy and the device

copy always have the same size. It is impossible to check

the partial data in the hash map simply by hashing because

the passed data address is not the start of the host address.

So the OpenUH implementation may traverse the entire hash

map to check whether the partial data range is within the

whole data range.

3) OpenARC: The OpenARC runtime implements the

present table using a C++ Standard Template Library (STL)

map (one map per device), which maps a starting host

address to a tuple of a device pointer and the data size.

Because C++ STL maps are typically implemented as Red-

Black trees where the elements are always sorted by their

keys following a specific strict weak ordering criterion,

present table lookups will take O(log n) time for any address

in the range of the data object.

To support CUDA managed memory, the OpenARC run-

time offers extra OpenACC runtime library routines [19].

These routines allocate and free managed memory, and can

fall back to using system memory if the target device does

not support managed memory. The present table also keeps

track of data allocated in managed memory by using the

host address for both the table key and the device pointer.

The OpenARC runtime can check whether host data is

allocated in the managed memory region by comparing the

host address and the device address. If they are equal, the

OpenARC runtime lets the underlying driver manage the

data. Having a separate set of managed memory APIs that

are backward-compatible with traditional CPU management

calls allows hybrid OpenACC programs that selectively

use managed memory, but which also execute correctly on

systems which do not support managed memory.

B. OpenCL

Data management with CUDA is very like data man-

agement in C. A memory allocation routine returns an

address; the program can add offsets to this address; memory

deallocation is done by passing the allocation address to

a free routine. This is convenient, since the host program

can capture the device address of an array, and perform

address arithmetic on the host to produce another valid

device address.

The OpenCL interface works quite differently. With

OpenCL, the memory allocation routine returns a buffer

handle, that is, the address to an opaque struct that the

OpenCL runtime uses to describe the memory buffer. No

address arithmetic can be performed on the handle. The

OpenCL buffer may or may not be resident in device

memory for the whole time between the allocate and free

operations. When the buffer is moved to the device, there is

no guarantee that it will be at the same memory address each

time. This makes it difficult to provide the same capabilities

as with the NVIDIA CUDA interface.

1) OpenARC: The OpenARC compiler supports OpenCL

on NVIDIA/AMD GPUs, Intel Xeon Phi Coprocessors, and

Altera FPGAs. The OpenARC implementation uses a fake

virtual device address space; the present table for an OpenCL

device maps a host address to a tuple with a fake device

pointer, an OpenCL handle, and the data size. Because the

fake device address can not be used in any user-written

OpenCL kernels, the runtime also provides an API routine

that returns the OpenCL handle and offset corresponding

to the fake device address. The current OpenARC runtime

implements the virtual device address space using the CPU

malloc() calls; when device memory is allocated, the Ope-

nARC runtime also allocates dummy space in the CPU

memory space, and uses the allocated address as a fake

device address. The fake virtual device address is used

666666

#pragma acc data create(...) / / d a t a 0
{ / / (0)

#pragma acc data create(...) / / d a t a 1
{ / / (1)

#pragma acc data create(...) / / d a t a 2
{ / / (2)

#pragma acc parallel create(...)
{ / / (3)

...
} / / (4)
#pragma acc kernels create(...)
{ / / (5)

...
} / / (6)

} / / (7)
} / / (8)

} / / (9)

(a) OpenACC code example

data 0

data 1

data 2

kernels

data 0 data 0

data 1

data 0

data 1

data 2

data 0

data 1

data 2

parallel

data 0

data 1

data 2

data 0

data 1

data 0

data 0

data 1

data 2

(0) (1) (2) (3) (4)

(5) (6) (7) (8) (9)

(b) Region stack flow for code in (a)

Figure 5: Runtime region stack structure.

only for the CPU-GPU address mapping and device address

calculations, and no data are stored in the allocated dummy

memory. Therefore, using the dummy memory consumes

only virtual CPU memory space, but no physical CPU

memory.

2) PGI: The PGI compilers support AMD GPUs and

APUs using their OpenCL 1.2 toolkit and libraries. The

PGI implementation uses a behavior specific to the AMD

OpenCL library. That behavior guarantees that a buffer will

always be placed at the same address on the device. The PGI

runtime allocates the largest buffers supported on the AMD

device, then implements its own memory manager within

these bigbuffers. When a bigbuffer is allocated, the runtime

launches a kernel that returns the device address where it

starts. To ensure that the buffers are resident on the device,

each OpenCL kernel launch has three (or more) arguments,

which are handles to the global bigbuffers. Currently, the

PGI compilers do not take advantage of the single physical

memory for AMD APUs.

3) OpenUH: OpenUH compiler adopts two different

approaches to support AMD GPUs. Both the approaches

generate OpenCL kernel functions for the GPUs. The dif-

ference in the approaches lies on the CPU side. In the first

approach, for detached non-unified memory AMD GPUs,

OpenUH compiler generates OpenCL runtime function calls

to allocate and free data memory. As the aforementioned

limitation of OpenCL memory handler, the solution we

proposed for CUDA cannot be applied to OpenCL to handle

the subarray problem. The subarray will be allocated within

a new OpenCL memory handler. In the second approach, for

the shared memory architecture, such as heterogeneous sys-

tem architecture (HSA)-based [23] AMD APUs, OpenUH

backend generates the host code binary built on top of HSA

runtime in order to share the memory pointer between the

CPU and the GPU. In this approach, there is no concept of

present table.

C. Asynchronous Data Transfers

OpenACC allows a program to specify that a compute

kernel or data transfer should execute asynchronously. An

async operation can be executed on the device while the host

program continues until it reaches a wait operation that waits

for its completion. OpenACC allows the implementation

to support several async queues on which operations are

enqueued, where any operation will not start until all earlier

operations on that same queue are complete. On NVIDIA

GPUs, a true asynchronous data transfer requires that the

host memory be pinned, that is, allocated or moved to

contiguous physical memory that the operating system will

not page. This allows the DMA unit to move data with a

simple physical start address and length, without interfacing

to the operating system page tables.

However, OpenACC does not usually have control over

memory allocation. Some data may be statically allocated, or

a local variable on the stack. Dynamically allocated memory

may be allocated by a routine compiled without OpenACC.

There is an interface to pin a range of memory, but even

this is hard to use productively.

1) OpenARC: For NVIDIA GPUs, the OpenARC runtime

offers two modes: prepinning and lazy pinning. In the

prepinning mode, the host data is always pinned when the

data is allocated on the device, since the runtime may not

know whether this data will be transferred asynchronously

or not at the GPU memory allocation time. In the lazy

pinning mode, on the other hand, the host data is pinned

just before the first asynchronous transfer. This mode pins

the host data only if they are transferred asynchronously,

saving unnecessary memory pinning, but the runtime should

track each asynchronous transfer to find the right time for

pinning.

For OpenCL devices, the OpenARC runtime relies on the

OpenCL nonblocking data transfer features.

667667

2) PGI: The default PGI implementation for NVIDIA

GPUs is to use two pinned buffers for upload and for down-

load, to allow for asynchronous transfers without pinning

user memory. For upload, the runtime will synchronously

copy the user memory to the first pinned buffer and issue an

asynchronous data transfer. If the data size is larger than the

pinned buffer, it will continue using the second buffer, and

loop back to the first buffer in a classical double buffering

scheme. For download, the runtime will issue asynchronous

data transfers to a download buffer, then save a descriptor

with information about where in host memory that data

should be copied. When another download needs that buffer,

or when the host is waiting on the device, the runtime will

copy the data from the buffer to the user memory.

The PGI OpenACC implementation has close interfaces

to PGI CUDA Fortran. If an CUDA Fortran allocatable

array has the pinned attribute, the compiler passes this

information to the OpenACC runtime and true asynchronous

data transfers are generated.

As with OpenARC, the PGI runtime just sets the non-

blocking flag for asynchronous transfers when targeting

OpenCL devices.

3) OpenUH: In the OpenUH implementation, the struc-

ture of the data not only includes the host address, device

address and data size, but also includes a pinned flag,

which is initialized to zero. When the data is transferred

asynchronously, if the pinned flag is not set, the runtime will

pin the whole host memory region for that data, regardless

of the transfer size, and set the pinned flag to one.

D. Asynchronous Allocate and Free

At entry to a data construct or at an enter data directive,

device memory may need to be allocated. At exit from a data
construct or at an exit data directive, device memory may

need to be freed. Does an implementation need to support

asynchronous data allocate and free?

Even if device memory allocation could be done asyn-

chronously, the device address can be captured by the

program. This means the address must be assigned syn-

chronously. At exit from a data construct or at an exit
data directive, any copyout operations must complete before

the memory is freed for reuse. If the free operation is

synchronous, the data movement for that memory must also

necessarily synchronous.

1) OpenARC: The OpenARC implementation allows

asynchronous free operations, while allocations are syn-

chronous. In the OpenARC implementation, the host data

to be asynchronously transferred are always pinned, either

eagerly or lazily, and thus no additional copy between the

internal buffer and the host data is needed. Asynchronous

free operations are implemented by putting the host address

and the associated async queue in a postponed-free table.

Synchronization operations check the postponed-free table

and perform pending free operations associated with the

synchronizations.
2) OpenUH: In OpenUH, the runtime creates the same

number of host helper threads as the number of devices.

Each thread is associated with one device. Each thread

creates an empty First In First Out (FIFO) task queue

which will be populated by the host main thread. The main

thread enqueues operations onto the appropriate task queue.

The corresponding helper thread can then asynchronously

perform memory allocate, deallocate, data transfer and

kernel launch operations. Memory allocation will behave

synchronously however, with the main thread waiting for

the helper thread to provide the device address.
3) PGI: The PGI implementation allows for asyn-

chronous free operations. As described earlier, the runtime

uses asynchronous data transfers to internal pinned buffers.

The runtime saves a descriptor, so that at some later point,

such as at a synchronization or when the buffer is needed,

the runtime can copy the data from the buffer to the

user memory. The descriptor also saves whether the device

memory should be freed. This means the device memory

doesn’t get freed until all transfers are complete.

One could imagine an implementation in which, at an

asynchronous allocate, the runtime searches through the

async queue for an asynchronous free, and reuse that address

for this allocate. This would assign an address, and as

long as the data is only accessed on this queue or after a

synchronization, it will be safe. The PGI runtime does not

do this, however. Instead, it implements allocate operations

synchronously. If the allocate fails because the device mem-

ory is full and there are outstanding asynchronous downloads

pending, the runtime will drain the download queues looking

for pending memory free operations.

E. Aliasing on a Data Directive

When there are two or more objects specified on a data

directive that are aliased with each other, OpenACC 2.0 is

silent on the intended behavior. In Figure 6, the programmer

void sub(float* x, float* y, int n){
#pragma acc data copyin(x[0:n]) \
copyout(y[0:n])
{ ... }

}
float* a;
...
sub(a, a, n);

Figure 6: Data aliasing example.

would expect the array a to be allocated on the device,

the data to be copied in at the top and copied out at the

bottom. However, not all implementations do this. The latest

OpenACC 2.5 specification defines the behavior that all data

movement associated with aliased data on the same directive

must be honored. A safe implementation could copy all data

668668

in at entry and copy all data out at exit from a data lifetime,

but optimizing this data movement can be important for

performance.

1) PGI: In the PGI implementation, the data clauses

are processed left-to-right at the top of a data construct.

In Figure 6, the data will be allocated and copied in to

the device for the first clause. When the second clause is

reached, the runtime will find that the array y is already

present, so its reference count will be incremented. At the

end of the data construct, the clauses are processed right-to-

left. The second clause will decrement the reference count

and find it is not yet zero, so will not copy the data out. The

first clause will then decrement the reference count to zero,

and since it is a copyin clause, will simply free the array.

2) OpenARC: The OpenARC implementation uses ref-

erence counts to control memory allocation and free op-

erations, but it always performs the data movements of

data clauses regardless of their reference counts, as long as

they are not allocated in managed memory. The OpenARC

runtime processes data clauses left-to-right. However, in

Figure 6, because memory transfers are always performed,

the runtime will copy the data in at entry and copy it out at

the exit.

F. Reusing Device Memory

Memory allocate and deallocation can be expensive op-

erations. Some runtimes try to improve performance by

managing free memory pools internally.

1) OpenARC: The OpenARC implementation uses two

memory pools to improve memory management. The first is

a pool of free device memory. When device memory is freed,

it is placed in the free memory pool. When a new device

memory is allocated, it reuses free memory from the pool

if there exists a block of the same size. The memory in the

pool is all deallocated if some device allocation runs out of

memory. The second technique keeps a track of both pinned

host memory and the corresponding device memory when

the device memory is freed. If the same host data is moved

to the device, the saved device memory is reused, saving

both host data pinning and device memory allocation costs.

However, this second technique may suffer from too much

memory pinning, causing slowdown or even program faults.

Therefore, OpenARC uses the first technique by default, and

the second one is optional for advanced users.

2) PGI: As with OpenARC, the PGI runtime uses a

free device memory pool for CUDA devices. For OpenCL

devices, the PGI runtime allocates a small number of big-
buffers and manages all user data as suballocations in those

bigbuffers; see Section IV-B2.

G. Partially Present Data

On a classic accelerator, a problem can arise where the

program moves a block of data to the device, then later wants

to move a larger or intersecting block of data:

#pragma acc enter data create(a[0:n])
...
#pragma acc enter data create(a[0:2*n])

In this example, the second enter data directive wants to

enlarge the size of a on the device. One possible way handle

this is to actually extend the memory allocated for a on

the device. However, when the original space for a was

allocated, there was no way to know whether to reserve

adjacent memory for future extension, so this is infeasible.

Another possible way is to allocate space for the whole

array a instead of a subset, but again the program won’t

necessarily know the extent of the whole array, particular in

C or C++. A third way is to allocate the union of all the

old and new data for the second directive, initializing this

with the elements from the original array. This is a challenge

because the program can actually capture the device address

of an array, so moving the array makes this device address

invalid. Also, these operations may occur while a procedure

is simultaneously computing on the original data, so moving

it would be invalid. OpenACC defines this behavior as a

runtime error, and all the compilers described in this article

issue a runtime error in this case.

V. DEEP COPY

The OpenACC committee continues to work on additional

features, in particular on support deep copy of nested data

structures [24], [25]. For instance, an dynamically allocated

array of a structured data type (C struct or Fortran derived
type), the data type has one or more members which are

themselves dynamically allocated arrays, perhaps themselves

of structured data types with additional allocatable members,

and so on. Some of these are conceptually simple (the C++

vector class) but become deceptively complex to describe

how to copy the data to the device and back.

A simple example is shown in Figure 7. In this example,

the programmer expects that copying the X struct will copy

the data to which its member points as well. The first

problem is to tell the runtime how much data starting at

X.d should be copied. After copying that data, the pointer

d on the device must be replaced with the address of that

new data. Any time the struct X gets copied back to the

host, that device pointer address must not be moved back to

the host. Deallocating or reallocating the data pointer on the

host or on the device must either be defined as invalid, or

the runtime must replicate the behavior in the other memory.

typedef struct{
float *d; size_t n; float coef;

} vtype;
vtype X;
...
#pragma acc enter data copyin(X)

Figure 7: Simple deep copy.

669669

Consider the C++ standard template vector class. A typi-

cal implementation is prototyped in Figure 8. The class has

only three data members, pointers to the start of the data

vector, a pointer to the first element past the end of the

data vector, and a pointer just past the end of the allocated

storage. The begin pointer points to actual data, but the other

pointers must be handled differently. Not only do they not

point to valid data, they may not even contain a valid address

(that can be dereferenced). Copying the vector to device

memory requires a way to tell the compiler and runtime

how much data to allocate, to fill in the begin pointer with

the address of that data, and to fill in the enddata and

endstorage pointers with offsets from the begin value. To

make this even more complicated, the data members are

only accessible from within the class, but the vector class is

typically implemented in a read-only system header file.

template<typename T>class vector{
T *begin, *enddata, *endstorage;

public:
T* begin() { return begin; }
T* end() { return enddata; }
size_t size() {return enddata-begin;}
...

};

Figure 8: C++ vector class implementation.

Another challenge from an OpenACC application is to

handle large struct arrays with dynamic members. The ICON

climate code [26] developed by the German Weather Service

(DWD) and the Max Planck Institute for Meteorology (MPI-

M) uses nested derived type arrays. Each element of the

main state array has many member arrays, some of which

are derived types with more member arrays, show in part

in Figure 9. The entire structure is quite large, and during

each phase of the computation, only a subset of the entire

structure is needed on the device. Moreover, some of the

members are only read during some of the phases. In the

interests of performance, we want to be able to optimize how

much data is allocated on and copied to the device, and how

much is copied back to the host. This requires being able to

select whether to allocate some members and not others, and

whether to copy some members in to device memory and

other members out to host memory, and to allow different

selections in different phases.

There are two possible directions to solve this problem.

One direction is to require the programmer to provide device
constructor and destructor routines, like the C++ object

constructors and destructors. These routines would perform

data allocation in device memory and movement between

host and device memories. The OpenACC runtime would

only have to know which routines to invoke at which points

in the program. While feasible, we feel this is a heavy burden

on the programmer.

type t_nh_state
type(t_nh_prog),allocatable::prog(:)
type(t_var_list),allocatable::prog_list(:)
...
end type
...
type(t_nt_state),allocatable::p_nh_state(:)
... p_nh_state(:)%diag%vt(:,:,:)
... p_nh_state(:)%prog(:)%vn(:,:,:)

Figure 9: ICON Fortran data structures.

A second direction is to specify the various options using

directives in the datatype declaration. There is a small set

of required behaviors that our users want, such as selecting

which members to copy and in which direction, specifying

the size of shape of the data (for C and C++, in particular),

and allowing different behavior for objects of the same

datatype in different points in the program. The OpenACC

committee is working on designing directive syntax that is

as functional as needed and as natural as possible.

VI. EVALUATION

This section evaluates the different implementations of

the OpenACC data model chosen by the three OpenACC

compilers (the PGI OpenACC compiler, OpenUH, and Ope-

nARC). Because it is difficult to quantitatively measure the

performance behavior of each feature of the OpenACC data

model independently, we measure only two representative

features: present table lookups and device memory alloca-
tion. We evaluated 7 OpenACC applications from the SPEC

ACCEL benchmark suite V1.1 [27] on an NVIDIA GPU.

(The evaluated features are not affected by a target device.)

A. Present Table Lookups

10
0

10
1

10
2

10
3

10
4

10
5

10
6

303.ostencil 304.olbm 314.omriq 352.ep 354.cg 357.csp 370.bt

T
o

ta
l
C

o
u

n
ts

PGI lookup
PGI probe

OpenARC lookup
OpenARC probe

OpenUH lookup
OpenUH probe

Figure 10: Present table lookup and probe.

Figure 10 shows the number of present table lookups,

where lookup means the number of the present table searches

requested by a generated OpenACC code, and probe refers

to the number of present table entries actually inspected

by the underlying implementation. The figure shows several

interesting findings; first, each implementation requests dif-

ferent number of present table lookups for the same program,

and OpenUH requests the least numbers, except for 352.ep
and 354.cg. The number of lookups will depends on how

the compiler translates data constructs; as shown in Sec-

tion IV-A2, OpenUH uses a static hash table, which helps the

670670

compiler to save the device address of the data once for all

compute regions within structured data constructs, reducing

the number of present table lookups. In 352.ep and 354.cg,

compute regions are enclosed by an outer loop. If the device

addresses of the data accessed in the enclosed compute

regions are looked up at the corresponding kernel invocation

sites, the present table lookups will be repeated at every

iteration of the enclosing loop. PGI reduces these recurring

lookups by hoisting the lookups out of the enclosing loops,

resulting in the least lookups for both 352.ep and 354.cg.

However, OpenARC applies the hoisting only to 352.ep, and

OpenUH does not apply it.

The ratio of the probe count to the lookup count in

the figure indicates that the Red-Black trees in PGI and

OpenARC work reasonably well on the tested benchmarks.

The ratio in OpenUH has a higher variance than PGI and

OpenARC, which is because the present table in OpenUH

uses a hash table; a hash table can find mapping in O(1) time

if the key exists in the mapping, but if the key represents a

partial data range, the entire hash map may be checked to

find whether the partial data range is within the whole data

range.

B. Device Memory Allocation

10
0

10
1

10
2

10
3

10
4

10
5

303.ostencil 304.olbm 314.omriq 352.ep 354.cg 357.csp 370.bt

T
o

ta
l
C

o
u

n
ts

PGI create
PGI malloc

OpenARC create
OpenARC malloc

OpenUH create
OpenUH malloc

Figure 11: Device memory create and malloc.

Figure 11 shows the number of device memory alloca-

tions, where create refers to the number of requests that

an OpenACC program requests to allocate data on the

device, and malloc indicates the actual number of device

memory allocations by the underlying implementation. This

figure also reveals several interesting results; first, in the

PGI implementation, the malloc count can be more than

the create count, which is because the PGI implementa-

tion allocates additional runtime buffers. Second, in some

benchmarks, PGI and OpenARC have much smaller malloc

count than the create count, which is because both PGI and

OpenARC reuse device memory by managing free memory

pools internally (Section IV-F). Third, in 352.ep and 354.cg,

three implementations have noticeable differences in both

the create counts and the malloc counts. As mentioned in the

previous section, these benchmarks have compute regions

enclosed by an outer loop, and thus memory allocation

hoisting optimization plays a critical role in reducing the

overall device memory allocations.

VII. SUMMARY

This article describes how several current implementations

support the OpenACC data constructs, highlighting the dif-

ferent choices made. The goal is to provide information and

guidance for other implementations of OpenACC or similar

programming models. OpenMP 4.0 included new target
extensions for attached devices. The OpenMP target data
constructs are quite similar to the OpenACC data constructs

and a runtime that supports one API can easily support both.

State-of-the-art devices have a more interesting variety of

memory hierarchies [28], [29], [30]. Some devices have a

simple flat memory, allowing an OpenACC implementation

to ignore the data directives and clauses entirely. Some have

both a large system memory and a separate high-bandwidth

memory, providing the challenge and opportunity for an

implementation to aggressively manage data traffic between

the system memory and the high-bandwidth memory. And

some have variations on the existing logically and physi-

cally separate device and system memories, requiring data

movement between the two. The OpenACC specification

and implementations must evolve to support many different

memory hierarchy organizations in order to provide a truly

performance-portable experience.

ACKNOWLEDGMENT

This material is based upon work supported by the U.S.

Department of Energy, Office of Science, Office of Ad-

vanced Scientific Computing Research. This manuscript has

been authored by UT-Battelle, LLC under Contract No. DE-

AC05-00OR22725 with the U.S. Department of Energy.

REFERENCES

[1] R. W. Hockney and C. R. Jesshope, The FPS AP-120B,
FPS164 (M140, M30), 264 (M60), 164/MAX (M145). CRC
Press, 1988, pp. 206–243.

[2] P. M. Kogge, The IBM 3838 Array Processor. CRC Press,
1981, pp. 164–166.

[3] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Husbands, and
K. Yelick, “The Potential of the Cell Processor for Scientific
Computing,” in Proc. of the 3rd Conference on Computing
Frontiers, ser. CF ’06. ACM, 2006, pp. 9–20.

[4] “CSX700 Floating Point Processor Datasheet,”
https://www.electronicsdatasheets.com/download/
5367711fe34e241020763e7c.pdf?format=pdf, accessed:
2017-01-20.

[5] J. Fang, H. Sips, L. Zhang, C. Xu, Y. Che, and A. L.
Varbanescu, “Test-driving Intel Xeon Phi,” in Proceedings of
the 5th ACM/SPEC International Conference on Performance
Engineering, ser. ICPE ’14. New York, NY, USA: ACM,
2014, pp. 137–148.

[6] D. Schneider, “Could Supercomputing Turn to Signal Proces-
sors (Again)?” http://spectrum.ieee.org/computing/hardware/
could-supercomputing-turn-to-signal-processors-again/,
2012, accessed: 2017-01-20.

671671

[7] J. Sanders and E. Kandrot, CUDA by Example. Addison
Wesley, 2010.

[8] AMD, Brook+ Programming, 1st ed. Advanced Micro
Devices, 2008, ch. 2.

[9] R. Farber, “Programming intel’s xeon phi: A jumpstart intro-
duction,” Dr. Dobb’s, Dec. 2012.

[10] TMS320C6000 Programmer’s Guide, Texas Instruments,
2011, number: SPRU198K.

[11] The OpenACC Application Programming Interface, Version
2.5, http://www.openacc.org/sites/default/files/OpenACC
2pt5.pdf, 2015, accessed: 2017-01-20.

[12] T. D. Han and T. S. Abdelrahman, “hiCUDA: High-Level
GPGPU Programming,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, no. 1, pp. 78–90, 2011.

[13] S. Lee and R. Eigenmann, “OpenMPC: Extended OpenMP
Programming and Tuning for GPUs,” in Proc. of the 2010
ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Com-
puter Society, 2010, pp. 1–11.

[14] T. B. Jablin, P. Prabhu, J. A. Jablin, N. P. Johnson, S. R.
Beard, and D. I. August, “Automatic CPU-GPU communi-
cation management and optimization,” in Proc. of the 32nd
ACM SIGPLAN conference on Programming language design
and implementation, ser. PLDI ’11. ACM, 2011, pp. 142–
151.

[15] S. Pai, R. Govindarajan, and M. J. Thazhuthaveetil, “Fast
and efficient automatic memory management for GPUs using
compiler-assisted runtime coherence scheme,” in Proc. of the
21st international conference on Parallel architectures and
compilation techniques, ser. PACT ’12. ACM, 2012, pp.
33–42.

[16] PGI, “PGI OpenACC Compiler,” http://www.pgroup.com/
resources/accel.htm, accessed: 2017-01-20.

[17] J. Beyer, “Use of OpenACC and OpenMP directives
in CRAY Compilation Environment (CCE),”
http://on-demand.gputechconf.com/gtc/2013/presentations/
S3084-OpenACC-OpenMP-Directives-CCE.pdf, accessed:
2017-01-20.

[18] R. Reyes, I. López-Rodrı́guez, J. Fumero, and F. Sande,
“accULL: An OpenACC Implementation with CUDA and
OpenCL Support,” in Euro-Par 2012 Parallel Processing, ser.
Lecture Notes in Computer Science, vol. 7484. Springer
Berlin Heidelberg, 2012, pp. 871–882.

[19] S. Lee and J. Vetter, “OpenARC: Extensible OpenACC
Compiler Framework for Directive-Based Accelerator Pro-
gramming Study,” in WACCPD: Workshop on Accelerator
Programming Using Directives in Conjunction with SC’14,
november 2014.

[20] X. Tian, R. Xu, Y. Yan, Z. Yun, S. Chandrasekaran, and
B. Chapman, “Compiling a high-level directive-based pro-
gramming model for gpgpus,” in International Workshop on
Languages and Compilers for Parallel Computing. Springer,
2013, pp. 105–120.

[21] B. Chapman, D. Eachempati, and O. Hernandez, “Experi-
ences Developing the OpenUH Compiler and Runtime In-
frastructure,” International Journal of Parallel Programming,
pp. 1–30, 2012.

[22] C. Dave, H. Bae, S.-J. Min, S. Lee, R. Eigenmann, and
S. Midkiff, “Cetus: A Source-to-Source Compiler Infrastruc-
ture for Multicores,” IEEE Computer, vol. 42, no. 12, pp.
36–42, 2009.

[23] “Heterogeneous System Architectures,” http://www.
hsafoundation.com/, accessed: 2017-01-20.

[24] “Complex Data Management in OpenACC Programs,” http:
//www.openacc.org/sites/default/files/TR-14-1.pdf, accessed:
2017-01-20.

[25] “Deep Copy Attach and Detach,” http://www.openacc.org/
sites/default/files/TR-16-1.pdf, accessed: 2017-01-20.

[26] ICON, “Icosahedral non-hydrostatic,” http://www.dlr.de/
pa/en/desktopdefault.aspx/tabid-8859/15306 read-41918/,
accessed: 2017-01-20.

[27] Standard Performance Evaluation Corporation, “SPEC AC-
CEL benchmark V1.1,” https://www.spec.org/accel/, ac-
cessed: 2017-01-20.

[28] J. S. Vetter, Ed., Contemporary High Performance Comput-
ing: From Petascale Toward Exascale, 1st ed., ser. CRC
Computational Science Series. Boca Raton: Taylor and
Francis, 2013, vol. 1.

[29] “Intel Knights Landing yields big bang for the
buck jump,” https://www.nextplatform.com/2016/06/20/
intel-knights-landing-yields-big-bang-buck-jump/, accessed:
2017-01-20.

[30] “NVlink takes GPU acceleration to the next
level,” https://www.nextplatform.com/2016/05/04/
nvlink-takes-gpu-acceleration-next-level/, accessed: 2017-
01-20.

672672

