
Accelerating Kirchhoff Migration on GPU using Directives

Rengan Xu†, Maxime Hugues‡, Henri Calandra‡, Sunita Chandrasekaran†, Barbara Chapman†
†Department of Computer Science, University of Houston, Houston, TX, USA

Email:{rxu6,schandrasekaran,bchapman}@uh.edu
‡TOTAL E&P Research and Technology USA, Houston, TX, USA

Email:{maxime.hugues,henri.calandra}@total.com

Abstract—Accelerators offer the potential to significantly
improve the performance of scientific applications when of-
floading compute intensive portions of programs to the ac-
celerators. However, effectively tapping their full potential is
difficult owing to the programmability challenges faced by the
users when mapping computation algorithms to the massively
parallel architectures such as GPUs.

Directive-based programming models offer programmers an
option to rapidly create prototype applications by annotating
region of code for offloading with hints to the compiler. This is
critical to improve the productivity in the production code. In
this paper, we study the effectiveness of a high-level directive-
based programming model, OpenACC, for parallelizing a seis-
mic migration application called Kirchhoff Migration on GPU
architecture. Kirchhoff Migration is a real-world production
code in the Oil & Gas industry. Because of its compute intensive
property, we focus on the computation part and explore
different mechanisms to effectively harness GPU’s computation
capabilities and memory hierarchy. We also analyze different
loop transformation techniques in different OpenACC compil-
ers and compare their performance differences. Compared to
one socket (10 CPU cores) on the experimental platform, one
GPU achieved a maximum speedup of 20.54x and 6.72x for
interpolation and extrapolation kernel functions.

Keywords-OpenACC; Kirchhoff Migration; GPU; Directives;
Programming Model;

I. INTRODUCTION

Heterogenous architectures comprising of CPU processors
and computation accelerators such as GPUs have been
widely used in the High Performance Computing (HPC)
field. These architecutres not only preserve CPU’s power-
ful control capability, but also provide massively parallel
computing capabilities. A wide variety of applications have
been ported to such architectures and reasonable speedup
have been achieved.

Currently the two main stream low-level programming
models for the GPU architectures are CUDA [2] and
OpenCL [7]. These models offer users programming in-
terfaces with execution models closely matching the GPU
architectures. Although GPU programming is achieveable
with these low-level models, the programmers are required
to thoroughly understand the hardware and significantly
change the application structure and algorithm. To improve
the productivity of application porting, an alternate approach
is to use high-level directive-based programming models

such as OpenACC [6], OpenMP 4.0 [8] and HMPP [9].
These models can be used by inserting directives and run-
time calls into the existing source code and rely on compilers
to transform and optimize the code internally using lower-
level programming models.

In this paper, we focus on OpenACC programming model,
an open standard for accelerator programming, to explore the
code portability and performance in a production quality
seismic migration application called Kirchhoff Migration.
Kirchhoff Migraiton [18] is a widely used application for
subsurface imaging in the Oil & Gas industry. The compu-
tation intensive and inherent parallel properties make this
application an ideal candidate for the GPU architecture. We
discuss how we parallelize and tune the performance of this
application using the OpenACC model, and present results
with different loop transformation techniques from different
compilers.

The main contributions of this paper include:
• We present the parallelization techniques that are spe-

cific to Kirchhoff Migration using directive-based ap-
proach.

• Based on the application’s properties, we harness
GPU’s compute capabilities and memory hierarchy to
optimize the performance.

• We investigate the generated kernel by a vendor com-
piler, and use the kernel transformation technique from
an open source compiler, and compare the performance
between these two different implementations.

The organization of this paper are as follows: Section II
provides an overview of the Kirchhoff Migration and Sec-
tion III gives an overview of GPU architecture and Ope-
nACC directives. Section IV describes the parallelization
details. The preliminary performance results are discussed
in Section V. Section VI highlights the related work in this
area. We conclude our work in Section VII.

II. OVERVIEW OF KIRCHHOFF MIGRATION

Kirchhoff Migration is an algorithm to obtain 3D images
of the earth subsurface. The working idea behind this
algorithm is as follows. During a seismic survey, as shown
in Figure 1, the sources on surface emit waves that will be
refracted or reflected on the different layers composing the
subsurface, and will eventually go back to receivers on the

2014 First Workshop on Accelerator Programming using Directives

978-1-4799-7023-0/14 $31.00 © 2014 IEEE

DOI 10.1109/WACCPD.2014.8

37

Figure 1: Seismic imaging

surface after a certain time. The receivers on subsurface will
capture those waves with some devices like seismograms.
The data from one source to one receiver is called a trace.
The data from one source to multiple receivers is called a
shot. Therefore, a shot includes many traces. The Kirchhoff
Migration aims at generating a 3D-image of the subsurface
by retrieving the position of the reflection points, therefore
showing the different layers of the target. The key to this
problem is to figure out how much time it takes for a wave
to travel from a source to any point of coordinate (x, y, z)
of the target, and back to the receiver. We can derive a
set of (x, y, z) points in the subsurface that could be the
potential reflection points. The candidates for the reflection
points can be identified by analyzing the trace recording:
it shows as a peak in the recordings. Therefore, out of all
the (x, y, z) points of the target, only those who return a
two-way traveltime that matches the peak of the trace are
suitable to be the true reflection points we seek.

The real reflection points could be “candidates” for many
traces. So if we repeat the seismic survey operation for a
large number of traces, then the set of real reflection points
will emerge from the set of “occasional” candidates that
showed up on very few traces. In other words, each trace
gives a contribution to the image. The closer the traveltime
for a given (x, y, z) point is to the trace’s peak, the more
the trace rewards this point. This can be translated by the
following formula, where the subscripts s and r refer to
‘source’ and ‘receiver’, respectively:

im(x, y, z) =
∑
s

∑
r

As,r(x, y, z)
dP (τs(x, y, z) + τr(x, y, z))

dt

At point (x, y, z), for a given trace, we take a sample from
the recording, at time τs(x, y, z) + τr(x, y, z): the closer
it is to the actual peak time for the recording, the higher
its value is. We ponderate this value by a weight function
As,r(x, y, z), that arbitrarily favorizes (x, y, z) points with
less awkward reflection angles, and positions that are more
likely to match the true reflection point. Basically, the value
of the final image at point (x, y, z) is the sum of all
the contributions of the traces, to this point. This sum is

expressed by the double sum over all sources and receivers.
The number of traces in recent surveys can sometimes
be over 500 millions, which consists of several TBs of
data, regarding the acquisition. This emphasizes the I/O and
computational-expensive costs of the algorithm.

We need to compute the time for a wave to travel from
a point at the surface to any point of the target, as well as
other attributes. We emulate a wave by casting rays in all
directions. The results of this computation is referred to as
“Green Functions”. The subsurface/target is modeled as a
3D-grid and green functions contain the traveltime for all
the points of this 3D-grid. The sources and receivers on the
surface are modeled by a 2D-grid. We have as many green
functions as we have nodes on the grid modeling the surface.
All of these grids are coarse, but the final image (the output
of Kirchhoff Migration) needs to be a much finer 3D-grid,
which can be done by either interpolation or extrapolation
techniques.

So the input of Kirchhoff Migration contains acquisition
which includes all seismic traces gathered from the surface,
and green functions which include parameters of the rays on
a coarse grid. The output of the application is a 3D-image of
the target/subsurface. The whole application processes each
trace in unit. Because the input data is very large which
could be up to several hundred GBs or several TBs, the I/O
operation consumes a large portions of time. To overcome
this problem, the application is split into two tasks:
• Coarse Task: do all I/O regarding seismic acquisition

and green functions and does computation on the whole
coarse grid.

• Image Task: migrate the trace and does computation on
a coarse grid to obtain a fine grid using interpolation
or extrapolation.

The workflow of the application is shown in Figure 2. The
path of the execution will diverge depending on whether it
is coarse task or image task. These two tasks are executed
by different MPI processes. The reason that the algorithm is
designed like this is because there are large I/O operations in
this application and we try to overlap the I/O operation and
the computation as much as possible. So when the image
task does the migration for one trace, the coarse task can do
the I/O operation to read the input data of the next trace and
green function and send to the image task. When the image
task finishes its computation, the input data has arrived so
that it does not need to read the data itself. The migration
in the image task is the most compute intensive part in this
application and that is the main part that will be parallelized
in this paper.

III. GPU ARCHITECTURE AND OPENACC DIRECTIVES

GPU architectures differ significantly from CPU. In this
paper, GPU is always referred to General Purpose GPU.
Nvidia GPU hardware cores are organized into an array
of Streaming Multiprocessors (SMs) and each SM contains

38

Figure 2: Application workflow

many cores named as Scalar Processors (SPs). Different
number of threads can be launched to execute a computation
kernel. These threads can be 1D, 2D or 3D thread blocks and
each thread block could also contain 1D, 2D or 3D threads.
One challenge for the programmers is how to effectively
map the massive number of threads to the nested loops in
their applications. Similar to CPU, GPU also has a complex
memory hierarchy: the global memory which has the highest
access latency; the shared memory, L1 cache and Read-
Only Data Cache [5] which have very low latency; and
the register which is the fastest part in GPU. So another
challenge for the programmers is how to lay out data on
different memory hierarchy to reduce the access latency and
maximize coalesced memory access for all threads. Using
low-level programming models such as CUDA and OpenCL
to do these have been known as not only time consuming
but also decreases code readability significantly. Directive-

based high-level programming models for accelerators, e.g.
OpenACC and OpenMP accelerator extensions, have been
created to address GPU programmability challenges. This
model allows the programmers to insert compiler directives
into a program to offload the annotated code portion to
accelerators. This approach heavily relies on compiler to
generate the efficient code for thread mapping and data
layout. This is more challenging to extract the optimal
performance compared to other explicit programming mod-
els. However, this model can preserve the original code
structure and parallelize the code incrementally thus easing
the development effort. The execution model assumes that
the main program runs on the host, while the compute
intensive regions are offloaded to the attached accelerator.
The memory spaces of the host and device are separate
and they are not directly accessible from each other. To
parallelize the compute kernels, OpenACC provides three
levels of parallelism: the coarse-grain parallelism “gang”,
the fine-grain parallelism “worker” and vector parallelism
“vector”. The compiler decides how to map these parallelism
to the GPU hardware. In most compiler implementations,
gang is mapped to the thread block, worker mapped to the
Y-dimension of each thread block and vector mapped to
the X-dimension of the thread block. But how to parallelize a
nested loop using these parallelism automatically and obtain
the optimal performance is still challenging for compilers,
since this requires the knowledge of the application and the
target hardware. There are already a number of compilers
that provides support for OpenACC. Those include PGI,
CAPS and Cray, open-source OpenACC compilers include
OpenUH [15], OpenARC [10] and accULL [12]. Most of
these compilers except Cray compiler translate OpenACC
code into CUDA code when the target platform is Nvidia
GPU.

IV. PARALLELIZATION AND OPTIMIZATION STRATEGIES

Section II has explained the workflow of Kirchhoff Mi-
gration. Aside from the communication between different
processes, the most computation intensive part is the mi-
gration step which uses either interpolation or extrapolation
techniques to obtain a fine grid from a coarse grid. Whether
to use interpolation or extrapolation is controlled by the user
in a configuration file. In the CPU serial code execution,
the interpolation or extrapolation takes up to 99% - 100%
computation cost of the migration step. So that is clearly
the most time consuming portion. Both interpolation and
extrapolation construct the unknown data points from some
known data points. The difference is that in the interpolation,
the unknown data points are between or within the known
data points, whereas in the extrapolation, the unknown data
points are outside the known data points. The grid before
interpolation or extrapolation is called the coarse grid, and
the grid after that is called fine grid.

39

Figure 3: CPU Interpolation in Kirchhoff Migration

Figure 4: OpenACC Interpolation in Kirchhoff Migration

A. Interpolation

Figure 3 shows the CPU interpolation process in the
Kirchhoff Migration. The eight blue points are known points
at the beginning, and the goal is to construct all other
unknown points in the grid. To get all the other unknown
points, the algorithm works as follows:
• Access the 4 vertical “pillars” with the known 8 points

from the coarse grid
• Perform interpolation in X-dimension in order to obtain

the front plane and rear plane
• Perform the interpolation along Y-dimension. In each

step of the Y-dimension interpolation, we first calculate
the points on the top and bottom lines in that Y plane
(or XZ plane) using the calculated data points from the
front and rear planes, then interpolate all the points in
Z-dimension in that plane.

Kirchhoff Migration was ported to CPUs using OpenMP.
This optimized CPU port scaled linearly as the number of
CPU threads increased. Listing 1 shows the Fortran CPU
OpenMP pseudo code for the interpolation in Kirchhoff
Migration. For CPUs, the data points on the top and bottom
are first calculated in each XZ plane interpolation, then
immediately used in the Z-dimension interpolation, so the

cache utilization is efficient. This is because the data is firstly
stored in Z-dimension, then in X and finally in Y-dimension
and it is accessed in the same order. Since OpenMP is not
the focus of this paper, we are not discussing the details
in-depth.
!$OMP PARALLEL DO
do i=ixmin_c,ixmax_c

do j=iymin_c,iymax_c
! g e t t h e 4 p i l l a r s from t h e c o a r s e node
do k
enddo

! b u i l d t h e f r o n t and r e a r p l a n e s
! (i n t e r p o l a t i o n i n X−d imens ion)
do m
enddo

! b u i l d a l l p l a n e s i n Y−d imens ion
do l

tmp_array(...) = ...
! i n t e r p o l a t i o n i n Z−d imens ion i n each Y p l a n e
do k

... = tmp_array(...)
enddo

enddo
enddo

enddo
!$OMP END PARALLEL DO

Listing 1: Interpolation OpenMP pseudo code in Kirchhoff
Migration

40

However, the OpenMP port (using OpenMP 3.1 instead
of OpenMP 4.0) is not efficient for the GPU architecture.
The OpenMP port as-is is not best suited for the GPU
architecture. For example, in the CPU implementation, the
loop on Y-dimension interpolation is executed sequentially.
All iterations in this loop are independent and therefore
can be parallelized using OpenACC but array privatization
technique [17] is needed for correct results. This is because
in CPU implementation, each thread uses a temporary buffer
to store the values of each XZ plane. When we parallelize
the Y-dimension interpolation loop, the temporary buffer
should be enlarged to hold all XZ planes, so that all GPU
threads can write into different memory addresses without
data race. Although OpenACC also provides “private” loop
clause, the compiler implementation is not mature enough
for privatizing arrays correctly, especially for complicated
kernels.

After the arrays are privatized the kernel can be safely
parallelized. In order to improve the performance, we can
do better by accessing the data from the memory with lesser
access latency. By default all data are stored in GPU global
memory. In order to reduce the memory access latency, the
data can be stored in the memory with lower latency. In GPU
memory hierarchy, there is a new cache in Kepler called
Read-Only Data Cache [5]. The requirement of using this
cache is that the data need to be read only, then the compiler
annotate those read only data with some CUDA intrinsic
keywords and the hardware can automatically cache those
data into read only cache. To take advantage of this cache,
the interpolation computation needs to be reordered. The
interpolation after reordering is shown in Figure 4. The first
and second steps are the same as the CPU implementation,
but in the third step, we do the interpolation in Y-dimension
for all XZ planes and get all values on the top and bottom
planes. The final step is to interpolate along Z-dimension
to construct all XY planes between the top and bottom
planes. The data on the top and bottom planes are read
only now and they can be safely cached into read only data
cache. The detailed code for the OpenACC implementation
is shown in Listing 2. The loop fission is applied to the
original single nested loop, thus make each interpolation
step as a kernel. This is because unlike CPU code in which
only the outermost loop is parallelized, the GPU architecture
prefers small kernels and needs more parallelism to hide
the memory access latency and in order to utilize read only
cache. Although loop fission generates more kernels which
leads to more kernel launch overhead, the benefits outweigh
such trivial penalty significantly.

The number of points to be interpolated can be controlled
in a configuration file. The smaller the distance between each
point in the fine grid, the more points need to be interpolated,
and the final migrated image is larger and more accurate.
Note that the cube in Figure 3 is just one cube in the entire
coarse grid. All the data points in the X-Y dimensions of

the coarse grid need to interpolateand for each coarse node,
the interpolation loops over the X-Y-Z dimensions of the
fine grid. This illustrates the compute intensive property in
interpolation.

!$ACC KERNELS LOOP
do i=ixmin_c,ixmax_c

do j=iymin_c,iymax_c
! g e t t h e 4 p i l l a r s from t h e c o a r s e node
do k
enddo

enddo
enddo

!$ACC KERNELS LOOP
do i=ixmin_c,ixmax_c

do j=iymin_c,iymax_c
! b u i l d t h e f r o n t and r e a r p l a n e s
! (i n t e r p o l a t i o n i n X−d imens ion)
do m
enddo

enddo
enddo

!$ACC KERNELS LOOP
do i=ixmin_c,ixmax_c

do j=iymin_c,iymax_c
! b u i l d t h e t o p and bot tom p l a n e s
! (i n t e r p o l a t i o n i n Y−d imens ion)
do l

tmp_array(...) = ...
enddo

enddo
enddo

!$ACC KERNELS LOOP
do i=ixmin_c,ixmax_c

do j=iymin_c,iymax_c
! b u i l d a l l p l a n e s between t o p and bot tom p l a n e s
do l

! (i n t e r p o l a t i o n i n Z−d imens ion)
do k

... = tmp_array(...)
enddo

enddo
enddo

enddo

Listing 2: Interpolation OpenACC pseudo code in Kirchhoff
Migration

Figure 5: Extrapolation in Kirchhoff Migration

B. Extrapolation

Figure 5 shows the working mechanism of extrapolation
for one coarse node. The node is in the center of the cube
and the goal is to extrapolate all other unknown data points
in the cube. The extrapolation is done using the first order

41

Taylor expansion:

f(x, y, z) = f(x0, y0, z0)+
∂f

∂x
(x−x0)+

∂f

∂y
(y−y0)+

∂f

∂z
(z−z0)

! $acc p a r a l l e l l oop c o l l a p s e (2) gang
do iy = iymin_c, iymax_c
do ix = iymin_c, iymax_c
izmin_c = ...
izmax_c = ...
......
! $acc loop worker
do iz = izmin_c, izmax_c

...
cond = ...
if(cond) cycle
! $acc loop c o l l a p s e (3) v e c t o r
do iy_in = iymin_f, iymax_f
do ix_in = ixmin_f, ixmax_f

do iz_in = izmin_f, izmax_f
! $acc a t om ic

mig_extrap(iz_in,...) += ...
! $acc end a tom ic

enddo
enddo

enddo
enddo

enddo
enddo

Listing 3: Extrapolation OpenACC pseudo code in Kirchhoff
Migration

The pseudo code for the extrapolation is shown in Listing 3.
As we can see, the extrapolation algorithm loops over all
coarse nodes in X-Y-Z dimensions, and for each coarse node,
the extrapolation is performed in X-Y-Z dimension of the
fine grid. To increase parallelism, we collapsed the innermost
triple nested loop and distributed into vector parallelism, the
Z-dimension of the coarse grid is distributed into worker
parallelism. The Y-X dimensions of the coarse grid is done
by gang parallelism. The reason that we use “atomic”
directive to protect the write operation is that this algorithm
has potential data race when it is parallelized. Figure 6 shows
the detailed explanation about why there is a possibility of
data race. In this figure, the colored data points are the points
on the coarse grid. The point (x0, y0+1, z0+1) extrapolates
all the red space and the point (x0 + 1, y0, z0) extrapolates
all the blue space, and both the red and blue space overlap
within a small cube. All the 8 data points shown in this figure
overlap their extrapolation space in this cube. So whenever 8
data points extrapolate in parallel, the threads compete each
other to write the data in the cube area. To prevent such data
race, the “atomic” directive guarantees that each thread has
exclusive access when writing in the cube area.

The extrapolation kernel in Kirchhoff Migration is a very
large and complicated kernel. There are two kinds of extrap-
olations in this application called KIMONO and TAMONO.
The profiling results show that KIMONO used 85 registers
per thread and TAMONO used 215 registers per thread.
The occupancy, which is the indicator of Thread Level
Parallelism (TLP) in CUDA, for these two extrapolation
kernels are 31% and 13%, respectively. These occupancy

Figure 6: Potential data race in extrapolation. The extrapo-
lation space of these 8 data points overlap within the central
cube. To make the figure clear, only the extrapolation space
of the upper right and lower left two points are drawn.

values indicate that there is no enough parallelism for these
two kernels. This is obvious since the number of registers
is limited in each SM of a GPU. So the more registers
each thread uses, the lesser threads will run concurrently
on each SM. Although high occupancy does not guarantee
high performance, it is one of the factors contributing to the
performance. Work in [1] demonstrates experiments using
techniques such as increasing Instruction Level Parallelism
(ILP) and processing multiple data per thread, thus the
occupancy goes down and the performance improves. The
author’s conclusion was that low occupancy could also
lead to high performance. However, The author did not
try to keep those factors fixed and try other techniques to
increase the occupancy and see whether that will improve
the performance. In our OpenACC extrapolation kernel, we
have already reordered the instructions to remove or reduce
the dependences between instructions, thus increase ILP. By
checking the generated CUDA kernel, we observed that the
technique that processing multiple data per thread has been
done by the compiler automatically. Now the occupancy is
low and the performance is still poor. What we want to try is
to increase the occupancy and see whether the performance
improves.

In our extrapolation kernels, when the number of threads
is fixed, reducing the number of registers per thread will
improve the occupancy. This is based on the result from
the CUDA occupancy calculator [4]. The result of reducing
the number of registers per thread is register spilling which
spills registers into L1 cache [3]. Therefore we cannot spill
too many registers since the access latency from L1 cache is
higher than register. However, zero register spilling leads to
low occupancy, so we need to balance the cost of occupancy
and register spilling. Figure 7 shows performance and occu-
pancy results while using different number of registers. The
result has verified our thoughts that appropriate occupancy

42

and register spilling are key to the performance improvement
in the extrapolation kernel. The best number of registers per
thread for KIMONO extrapolation and TAMONO extrapo-
lation are 40 and 64, respectively. We use these best register
numbers in our later experiments.

C. Asynchronous Data Transfer

Although in GPU computing, the data transfer between
CPU and GPU is a serious issue for many applications, this
is not a big issue in Kirchhoff Migration. For all the data to
be used on GPU device, the device memory are allocated at
the beginning of the application by using “enter data”
directive and freed at the end of the application by using
“exit data” directive. For the data movement in the
middle of the computation, once the image task has received
the green function and trace from the coarse task, we issue
the data update request immediately by using “update
async” directive so that the data is transferred from CPU
to GPU asynchronously. Then the CPU performs the FFT
operation for the trace data and we also transfer the result
asynchronously to GPU. Here asynchronous data transfer
of green function and FFT computation could overlap each
other. Since the data transfer only takes a tiny fraction of
the whole application, this does not impact the performance
too much.

V. PRELIMINARY EVALUATION

The experiment platform is Cray cluster. Each node of
the cluster has 20 cores (2 sockets) Intel Xeon E5-2680 v2
x86 64 CPU (Ivy Bridge) with 64GB main memory, and
an Nvidia Kepler GPU card (K40) with 8GB main memory.
We use PGI 14.6 compiler to evaluate the performance of
Kirchhoff Migration application for both CPU code and
OpenACC code. The CPU code runs on one socket that uses
10 OpenMP threads. Optimizationi flag used is -O3 for both
OpenMP and OpenACC. CUDA version used by the Ope-
nACC compiler is CUDA 5.5. The OpenACC code is com-
piled and linked with the flag “-ta=tesla:cc35,pin,nofma”, in
order to generate the code specific to Kepler architecture, use
pinned memory for asynchronous data transfer, and disable
FMA [16] to easily compare the OpenACC result with CPU
result. We use one MPI process for coarse task and another
one for image task in both CPU and OpenACC codes.

Two datasets are used in our experiment: ONELAYER
and SALT. The ONELAYER data features a single horizon-
tal reflector, transition between the two different layers at
around z=1600m. The SALT dataset shows a salt dome. To
maximize the GPU memory usage, we choose the smallest
possible image resolution which is the step size in the fine
grid. As a result, the image resolution is dx=dy=dz=5 for
ONELAYER and dx=dy=dz=10 for SALT. The smallest
compute unit is 1 shot. In order to get enough computation
and avoid too long execution time, for ONELAYER we used
50 shots for interpolation and 4 shots for extrapolation, and

for SALT we used only 1 shot for both interpolation and
extrapolation.

There are three types of interpolation: offset gather, angle
gather and angle gathers. They all follow the interpolation
process as described in Section IV. The difference lies in the
slight different computation part. The extraplation also has
two types: KIMONO and TAMONO. They both follow the
extrapolation algorithm in Section IV but TAMONO code
structure is more complicated and has more computation.
The experiment results for ONELAYER dataset is shown
in Table I. The time taken for computation, communication
and the whole application is measured. The application does
not include the final image writing time since that takes long
time to write several GBs image data and non-parallelizable.
Parallel I/O could be used, but we will not focus on that
in this paper. The computation part of the application is
the migration part which includes interpolation/extrapolation
(≥99% of migration time) and some other computation like
FFT operation.

For the offset gather interpolation, we got a speedup of
11.42x. For the whole application, a speedup of 6.31 is
achieved. The speedup of the whole application seem lesser
than the computation speedup, this is due to communica-
tion and I/O cost. The communication is required in this
application since the coarse task needs to send the trace and
green functions to the image task. When the computation
finishes too fast, the input data to the image task may have
not arrived yet so that the image task spends more time
to wait for the data. This observation is true for all types
of interpolation. Also we notice that the application time is
longer than the sum of the computation and communication
time. This time gap is the I/O operation of the coarse task.
This means although we try to use two processes to handle
I/O and computation differently, the I/O and computation
still could not completely overlap each other. Especially
when the computation is faster, such gap will be larger.
Note that only the I/O in the coarse task and computation in
the image task can overlap each other, the communication
between the coarse task and image task cannot overlap either
the I/O or the computation. These conclusions are true for
all types of interpolations.

It is observed that the angle gather/gathers speedup is
higher than the offset gather speedup. This is because there
are “acos()” operation in these kernels. GPU has Special
Function Units (SFU) on the hardware for “acos” like
transcendental functions. However, CPU only has software
solution for these functions.

Table II shows the results of SALT dataset. We can see
that SALT got less speedup than ONELAYER in interpola-
tion. This is because the amount of computation in SALT is
less than ONELAYER. In our experiments, with SALT data,
the number of coarse nodes in the coarse grid is 134x135x40,
and the image resolution is 10x10x10, the number of fine
nodes in the fine grid is the product of them which is

43

 0

 2

 4

 6

 8

 10

 12

 14

 16

30 35 40 45 64 85
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2
T
im

e
(s

)

Number of registers

Performance
Occupancy

(a) KIMONO Extrapolation

 0

 5

 10

 15

 20

 25

 30

 35

40 50 64 70 100 215
 0

 0.2

 0.4

 0.6

 0.8

 1

T
im

e
(s

)

Number of registers

Performance
Occupancy

(b) TAMONO Extrapolation

Figure 7: Performance and occupancy with changing registers per thread. In both figures, on the right side, the number
of registers per thread is high which caused low occupancy which further leads to low performance. On the left side, the
number of registers per thread is low which caused high occupancy, but more register spilling caused low performance. The
middle part has moderate occupancy and low register spilling which leads to high performance.

Table I: Kirchhoff Migration performance and speedup for ONELAYER dataset

Migration
Technique Type Version Computation Communication Application

Time(s) Speedup Time(s) Time(s) Speedup

Interpolation

offset gather CPU (10 cores) 50.46 1 0.4 53.33 1
OpenACC 4.42 11.42 1.72 8.45 6.31

angle gather CPU (10 cores) 115.29 1 0.4 118.18 1
OpenACC 6.07 18.99 0.55 9.1 12.99

angle gathers CPU (10 cores) 136.2 1 0.4 139.25 1
OpenACC 6.63 20.54 0.52 9.62 14.48

Extrapolation KIMONO CPU (10 cores) 6.96 1 0.06 9.16 1
OpenACC 2.57 2.71 0.05 4.34 2.11

Table II: Kirchhoff Migration performance and speedup for SALT dataset

Migration
Technique Type Version Computation Communication Application

Time(s) Speedup Time(s) Time(s) Speedup

Interpolation

offset gather CPU (10 cores) 5809.59 1 334.8 6612.28 1
OpenACC 96.09 6.05 461.84 1892.22 3.49

angle gather CPU (10 cores) 12814.14 1 332.34 13612.84 1
OpenACC 1174.18 10.91 442.86 2081.61 6.54

angle gathers CPU (10 cores) 15041.34 1 333.51 15842.53 1
OpenACC 1261.33 11.92 444.52 2166.53 7.31

Extrapolation

KIMONO CPU (10 cores) 6922.19 1 331.36 7719.02 1
OpenACC 2701.33 2.56 441.25 3590.02 2.15

TAMONO
CPU (10 cores) 23494.76 1 330.34 24292.81 1

OpenACC 4581.60 5.13 439.16 5462.1 4.45
OpenACC UH 3498.82 6.72 437.97 4382.47 5.54

723600000. While in ONELAYER, the number of coarse
nodes is 72x72x30, and the image resolution is 5x5x5, so the
number of fine nodes in the fine grid is 1244160000 which
is close to twice the size of SALT data. Based on Amdahl’s
law, when the parallelizable computation is larger, we can
get higher speedup when the same number of processors are
used.

Implementation of OpenACC features differ from one
compiler to another. Using more than one compiler will
allow us to study how different implementations can con-
tribute to optimal performance. To compare the perfor-

mance differences, we also tried our open source OpenACC
compiler called OpenUH [15] that uses a different kernel
transformation technique than PGI compiler. Due to the
kernel complexity and time limit, we only compared the
performance of TAMONO extrapolation. The performance
and speedup are shown in OpenACC UH row in Table II.
We can see that the code using OpenUH kernel transforma-
tion technique was around 18 minutes faster and therefore
achieved higher speedup than PGI. The reason for such
performance differences is due to the OpenACC kernels’
different code generation.

44

et4 = iyxmax_c-iyxmin_c+1
tc3 = izmax_c-izmin_c+1

j1651 = 0;
BB_22:;
i_3 = blockIdx.x-et4 + j1651;
if(i_3>=0) goto BB_28;
if(threadIdx.x+threadIdx.y ! =0)

goto BB_36;
! gang work
gang_list = ...
shared_gang_list = gang_list;
__threadfence_block();

BB_36:;
__syncthreads();
gang_list = shared_gang_list;

j1649 = 0;
BB_35:;
if((threadIdx.y-tc3+j1649) >= 0) goto BB_41;
if(threadIdx.x ! =0) go to BB 124 ;
! worker work b e f o r e c y c l e
cond = ...
worker_list1 = ...
e284[threadIdx.y] = cond;
shared_worker_list1[threadIdx.y] = worker_list1;
__threadfence_block();
BB_124:
worker_list1 = shared_worker_list1[threadIdx.y];
if(e284[threadIdx.y] ! = 0) go to BB 41 ;
if(threadIdx.x ! = 0) go to BB 110 ;
! worker work a f t e r c y c l e
shared_worker_list2[threadIdx.y] = worker_list2;
__threadfence_block();
BB_110:;
worker_list2 = shared_worker_list2[threadIdx.y];

.
i2224s = 0;
x119 = iymax_f-iymin_f+1;
x117 = izmax_f-izmin_f+1;
x118 = ixmax_f-ixmin_f+1;
et412 = x118*x117*x119;
et422 = threadIdx.x - et412;
BB_104:;
i_1 = threadIdx.x + i2224s;
i_5 = et422 + i2224s;
if(i_5 >= 0) goto BB_107:

! v e c t o r work
...

BB_107:;
i2224s = i2224s + 32;
if((i2224-et412)<0) goto BB_104;

BB_41:;
j1649 = j1649 + blockDim.y;
if((j1649-tc3)<0) goto BB_35;

BB_28:;
j1651= j1651 + gridDim.x
if((j1651-et4)<0) goto BB_22

Listing 4: PGI kernel transformation

iy_size = iymax_c-iymin_c+1;
ix_size = ixmax_c-ixmin_c+1;
iyx = blockIdx.x;
while(iyx<iy_size*ix_size)
{

iy = ...; ix=...;
...
iz = threadIdx.y + izmin_c;
while(iz<izmax_c)
{

cond = ...
if(cond) goto IZ_END;

size1 = iymax_f-iymin_f+1;
size2 = ixmax_f-ixmin_f+1;

size3 = izmax_f-izmin_f+1;
iyxz_in = threadIdx.x;
while(iyxz_in<size1*size2*size3)
{

iy_in=...;ix_in=...;iz_in=...;
...
iyxz_in += blockDim.x;

}
IZ_END:;
iz += blockDim.y;

}
iyx += gridDim.x;

}

Listing 5: OpenUH kernel transformation

For the kernel in Listing 3, PGI and OpenUH translate
them differently in Listing 4 and Listing 5, respectively.
For the kernel using gang, worker and vector par-
allelism, PGI uses the first thread in each thread block
(threadIdx.x+threadIdx.y==0) to do the gang work, then it
stores the results into the shared memory and broadcast
to other threads in the thread block. In the next worker
loop, first each worker fetches the gang loop results from
the shared memory, then the first thread in each worker
(threadIdx.x==0) does the worker work. When there is a
cycle statement in the worker loop, that worker first stores
the results before the cycle statement and broadcast to other
threads, and whoever workers passing the cycle statement
fetches those results before cycle from the shared memory.
All the vector threads in each worker does the work in
the vector loop. OpenUH compiler does not use this type
of kernel transformation. Instead it lets all workers inside
each gang do the gang work redundantly, and all the vector
threads inside each worker do the worker work redundantly,
so that there is no operations to store the temporary gang and
worker results into shared memory and broadcast to other
threads and then fetch those results from the shared memory
again. This different in implementation may be a possible
reason for the performance differences in our extrapolation
experiment.

VI. RELATED WORK

Kirchhoff Migration is one of the most widely used seis-
mic migration methods. There are different implementations
of this application and different programming models have
been used to accelerate this application. Shi et al. [13]
used CUDA to parallelize this application and used CUDA
streams to overlap the data communication and computation,
and they also discussed the floating point result difference
between GPU and CPU. Due to the implementation dif-
ference, they did not have interpolation or extrapolation
in their migration. Because they did not use the design
like us to split the I/O operation and computation, their
data transfer dominates the execution time, so they had
to use CUDA streams to overlap the data transfer and
computation. Our algorithm design allows us to focus on
the computation part, but we still used asynchronous data
transfer to transfer the green function and trace buffer to

45

the GPU to further minimize the data movement cost. We
used OpenACC directives instead of CUDA streams which
greatly improved the productivity.

Panetta et al. [11] ported the Kirchhoff Migration on
a cluster of GPUs. They used Tesla C1060 GPU which
does not have Read-Only Data Cache, so they parallelized
the migration with CUDA using global memory without
considering to fetch the data from a memory with less
access latency. And their migration only has interpolation,
without extrapolation. In addition, since they ported to a
cluster, they also discussed the load balancing issue. Sun
et al. [14] used OpenCL programming model to parallelize
Kirchhoff Migration and applied vector operation and texture
memory to optimize the performance, and finally obtained
the comparable performance to CUDA code.

VII. CONCLUSION

This paper briefly introduces the widely used Kirchhoff
Migration application within the Oil and Gas industry. We
then discuss OpenACC’s usability for this application. We
particularly deal with the interpolation and extrapolation of
the migration computation part. We discuss the following
techniques to optimize the application port:
• Ways to reorder the computation in interpolation to

optimize the memory access,
• Use the atomic operation to prevent the potential data

race in extrapolation,
• Choose the optimal number of registers per thread to

balance the occupancy and register spilling to optimize
the extrapolation kernel performance.

We demonstrate our findings using ONELAYER and SALT
two datasets, and analyze the performance difference. We
also analyze different kernel transformation techniques from
OpenACC to CUDA in both PGI and OpenUH compilers,
and compared their performances in one extrapolation type.
As future work, we plan to investigate new techniques to
further reduce the communication cost between the coarse
task and image task and use multi-GPU to further improve
the performance.

ACKNOWLEDGMENT

The authors would like to thank PGI compiler team for
providing technical support and TOTAL for providing the
computing resources.

REFERENCES

[1] Better Performance at Lower Occupancy. http://www.cs.
berkeley.edu/∼volkov/volkov10-GTC.pdf, 2014.

[2] CUDA. http://www.nvidia.com/object/cuda home new.html,
2014.

[3] CUDA C Programming Guide. http://docs.nvidia.com/cuda/
cuda-c-programming-guide/, 2014.

[4] CUDA Occupancy Calculator. http://docs.nvidia.com/cuda/
cuda-c-best-practices-guide/#calculating-occupancy, 2014.

[5] Kepler Tuning Guide. http://docs.nvidia.com/cuda/
kepler-tuning-guide/, 2014.

[6] OpenACC. http://www.openacc-standard.org, 2014.

[7] OpenCL Standard. http://www.khronos.org/opencl, 2014.

[8] OpenMP. www.openmp.org, 2014.

[9] Romain Dolbeau, Stéphane Bihan, and François Bodin.
HMPP: A Hybrid Multi-core Parallel Programming Environ-
ment. In Workshop on GPGPU, 2007.

[10] Seyong Lee, Dong Li, and Jeffrey S Vetter. Interactive
Program Debugging and Optimization for Directive-Based,
Efficient GPU Computing, 2014.

[11] Jairo Panetta, Thiago Teixeira, Paulo RP de Souza Filho,
Carlos A da Cunha Finho, David Sotelo, F Da Motta, Sil-
vio Sinedino Pinheiro, I Pedrosa, Andre L Romanelli Rosa,
Luiz R Monnerat, et al. Accelerating Kirchhoff Migration
by CPU and GPU Cooperation. In Computer Architecture
and High Performance Computing, 2009. SBAC-PAD’09. 21st
International Symposium on, pages 26–32. IEEE, 2009.

[12] Ruymán Reyes, Iván López-Rodrı́guez, Juan J Fumero, and
Francisco de Sande. accULL: An OpenACC Implementation
with CUDA and OpenCL Support. In Euro-Par 2012 Parallel
Processing, pages 871–882. Springer, 2012.

[13] Xiaohua Shi, Chuang Li, Shihu Wang, and Xu Wang. Com-
puting Prestack Kirchhoff Time Migration on General Pur-
pose GPU. Computers & Geosciences, 37(10):1702–1710,
2011.

[14] Peiyuan Sun and Xiaohua Shi. An OpenCL Approach of
Prestack Kirchhoff Time Migration Algorithm on General
Purpose GPU. In Parallel and Distributed Computing, Appli-
cations and Technologies (PDCAT), 2012 13th International
Conference on, pages 179–183. IEEE, 2012.

[15] Xiaonan Tian, Rengan Xu, Yonghong Yan, Zhifeng Yun,
Sunita Chandrasekaran, and Barbara Chapman. Compiling A
High-Level Directive-based Programming Model for GPG-
PUs. In Intl. workshop on LCPC 2013, pages 105–120.
Springer International Publishing, 2014.

[16] Nathan Whitehead and Alex Fit-Florea. Precision & perfor-
mance: Floating point and IEEE 754 compliance for NVIDIA
GPUs. rn (A+ B), 21:1–1874919424, 2011.

[17] Rengan Xu, Xiaonan Tian, Sunita Chandrasekaran, Yonghong
Yan, and Barbara Chapman. NAS Parallel Benchmarks on
GPGPUs using a Directive-based Programming Model. In
Intl. workshop on LCPC 2014, 2014.

[18] Özdogan Yilmaz and Stephen M Doherty. Seismic Data
Processing, volume 2. Society of Exploration Geophysicists
Tulsa, 1987.

46

