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Abstract. The broad adoption of accelerators boosts the interest in
accelerator programming. Accelerators such as GPGPUs are optimized
for throughput and offer high GFLOPS and memory bandwidth. CUDA
has been adopted quite rapidly but it is proprietary and only applicable
to GPUs, and the difficulty in writing efficient CUDA code has kin-
dled the necessity to create higher-level programming approaches such
as OpenACC. Directive-based programming models such as OpenMP
and OpenACC offer programmers an option to rapidly create prototype
applications by adding annotations to guide compiler optimizations. In
this paper we study the effectiveness of a high-level directive based pro-
gramming model, OpenACC, for parallelizing NAS Parallel Benchmarks
(NPB) on GPGPUs. We present the application of techniques such as
array privatization, memory coalescing, cache optimization and examine
their impact on the performance of the benchmarks. The right choice
or combination of techniques/hints are crucial for compilers to generate
highly efficient codes tuned to a particular type of accelerator. Poorly
selected choice or combination of techniques can lead to degraded per-
formance. We also propose a new clause, ‘scan’, that handles scan op-
erations for arbitrary input array size. We hope that the practices dis-
cussed in this paper will provide useful guidance to users to effectively
migrate their sequential/CPU-parallel codes to GPGPU architectures
and achieve optimal performance.

1 Introduction

Heterogeneous architectures that comprise of commodity CPU processors and
computational accelerators such as GPGPUs have been increasingly adopted in
both supercomputers and workstations/desktops for engineering and scientific
computing. These architectures are able to provide massively parallel computing
capabilities provided by accelerators while preserving the flexibilities of CPU
accommodating computation of different workloads. However, effectively tapping
their full potential is not straight-forward, largely due to the programmability
challenges faced by users while mapping highly computation algorithms.

Programming models such as CUDA[7] and OpenCL[4] for GPGPUs offer
users programming interfaces with execution models closely matching the GPU
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architectures. Effectively using these interfaces for creating highly optimized ap-
plications require programmers to thoroughly understand the underlying archi-
tecture, as well as significantly change the program structures and algorithms.
This affects both productivity and performance. Another approach that has
been standardized are the high-level directive-based programming models, e.g.
HMPP[14], OpenACC [3] and OpenMP [5]. These models require developers
to insert directives and runtime calls into the existing source code, offloading
portions of Fortran or C/C++ codes to be executed on accelerators.

Directives are high-level language constructs that programmers can use to
provide useful hints to compilers to perform certain transformation and opti-
mizations on the annotated code region. The use of directives can significantly
improve programming productivity. Users can still achieve high performance of
their program comparable to code written in CUDA or OpenCL, subjected to
the requirements that a careful choice of directives and compiler optimization
strategies are made. The choice of such strategies vary from one accelerator type
to the other.

In this paper, we will discuss the parallelization strategies to port NAS
Parallel Benchmarks (NPB) [10] to GPGPUs using high-level compiler direc-
tives, OpenACC. NPB are well recognized for evaluating current and emerging
multi-core/many-core hardware architectures, characterizing parallel program-
ming models and testing compiler implementations. The suite consists of five par-
allel kernels (IS, EP, CG, MG and FT) and three simulated computational fluid
dynamics (CFD) applications (LU, SP and BT) derived from important classes of
aerophysics applications. Together they mimic the computation and data move-
ment characteristics of large scale computational CFD applications [10]. This
is one of the standard benchmarks that is close to real world applications. We
believe that the OpenACC programming techniques used in this paper can be
applicable to other models such as OpenMP. Based on the application require-
ments, we will analyze the applicability of optimization strategies such as array
privatization, memory coalescing and cache optimization. With vigorous experi-
mental analysis, we will then analyze how the performance can be incrementally
tuned.

The main contributions of this paper are:

– With GPUs as the target architecture, we highlight the critical techniques
and practices required to parallelize benchmarks in NAS that are close to
real-world applications.

– We analyze a number of choices and combinations of optimization techniques
and study their impact on application performance. We learned that poorly
selected options or using system default options for optimizations may lead
to significant performance degradation. We share these findings in this paper.

– We also compare the performances of OpenACC NPB with that of the well-
tuned OpenCL and CUDA versions of the benchmarks to present the rea-
soning behind the performance gap.

To the best of our knowledge, we are the first group to create an OpenACC
benchmark suite for the C programs in NPB.
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The organization of this paper is as follows: Section 2 provides an overview
of GPU architecture and OpenACC. In section 3 we discuss typical steps of
parallelizing scientific application using OpenACC and some optimization tech-
niques. Performance results are discussed in Section 4. Section 5 discusses the
programmability and performance portability issues of using OpenACC. Sec-
tion 6 highlights related work in this area. We conclude our work in Section 7.

2 GPU Architecture and OpenACC Directives

GPU architectures differ significantly from that of traditional processors. In this
paper, GPU is always referred to General Purpose GPU. Employing a Single In-
struction Multiple Threads (SIMT) architecture, NVIDIA GPUs have hundreds
of cores that can process thousands of software threads simultaneously. GPUs
organize both hardware cores and software threads into two-level of parallelism.
Hardware cores are organized into an array of SMs (Streaming Multiproces-
sors), each SM consisting of a number of core named as SPs (Scalar Processors).
An execution of a computational kernel, e.g. CUDA kernel, will launch a set of
(software) thread blocks. Each thread block can contain hundreds of threads. For
programmers, the challenges to efficiently utilize the massive parallel capabilities
of GPUs are to map the algorithms onto two-level thread hierarchy, and to lay
out data on both the global memory and shared memory to maximize coalesced
memory access for the threads. Using low-level programming models such as
CUDA and OpenCL to do this has been known as not only time consuming but
also the software created are not identical to its original algorithms significantly
decreasing code readability.

Directive-based high-level programming models for accelerators, e.g. Ope-
nACC and OpenMP accelerator extensions, have been created to address this
programmability challenge of GPUs. Using these programming models, program-
mers insert compiler directives into a program to annotate portions of code to
be offloaded onto accelerators for executions. This approach relies heavily on
the compiler to generate efficient code for thread mapping and data layout. It
could be potentially challenging to extract optimal performance using such an
approach rather than using other explicit programming models. However, the
model simplifies programming on heterogeneous systems thus saving develop-
ment time, while also preserves the original code structure that helps in code
portability. These models extend the host-centric parallel execution model for
devices that reside in separate memory spaces. The execution model assumes
that the main program runs on the host, while the compute-intensive regions of
the main program are offloaded to the attached accelerator. The memory spaces
on the host and the device are separate from one another. Host cannot access
the device memory directly and vice versa.

OpenACC allows users to specify three levels of parallelism in a data parallel
region: coarse-grain parallelism “gang”, fine-grain parallelism “worker” and vec-
tor parallelism “vector”, to map to the multiple-level thread hierarchy of GPUs.
Mapping these three-level parallelism to the GPU threading structure will be left
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to the compiler and runtime systems, according to the hints given by the pro-
grammers. It can be a challenge for programmers, particularly on large programs
with complex irregular data access pattern and thread synchronization.

There are already a number of compilers that provides support for OpenACC.
Those include PGI, CAPS and Cray, open-source OpenACC compilers include
accULL [22], OpenUH [24] and OpenARC [19]. Our focus in this paper is to use
the NAS benchmarks to evaluate OpenACC support in our in-house OpenUH
compiler.

3 Parallelization and Optimization Strategies

One of the main benefits of programming using a directive-based programming
model is achieving performance by adding directives incrementally and creating
portable modifications to an existing code. We consider the OpenMP version of
NPB benchmarks as the starting point. Steps to parallelize legacy code using
OpenACC are:

1) Profile the application to find the compute intensive parts, which are usu-
ally loops.

2) Determine whether the compute intensive loops can be executed in paral-
lel. If not, perform necessary code transformations to make the loops paralleliz-
able, if possible.

3) Prepend parallel/kernels directives to these loops. The kernels direc-
tive indicates that the loop needs to be executed on the accelerator. Using the
parallel directive alone will cause the threads to run the annotated code block
redundantly, until a loop directive is encountered. The parallel directive is
mostly effective for non-loop statements.

4) Add data directives for data movement between the host and the device.
This directive should be used with care to avoid redundant data movement, e.g.
putting data directives across multiple compute regions. Inside the data region,
if the host or device needs some data at the end of one compute region, update
host directive could be used to synchronize the corresponding data from the
device to host, or update device directive is used if the device needs some data
from the host.

5) Optimize data structures and array access pattern to efficiently use the
device memory. For instance, accessing data in the global memory in a coalesced
way, i.e. consecutive threads should access consecutive memory address. This
may require some loop optimizations like loop permutation, or transforming the
data layout that will change the memory access pattern.

6) Apply loop scheduling tuning. Most of the OpenACC compilers provide
some feedback during compilation informing users about how a loop is sched-
uled. If the user finds the default loop scheduling not optimal, the user should
optimize the loop manually by adding more loop directives. This should lead to
improvement in speedup.

7) Use other advanced optimizations such as the cache directive, which de-
fines the variables to be cached by the kernel. Usage of the async clause will
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for(k=0; k<N; k++){ for(k=0; k<N; k++){
for(j=0; j<N; j++){ for(j=0; j<N; j++){

for(i=0; i<N; i++){ for(i=0; i<N; i++){
A[j][i] = ... AX[k][j][i] = ...

} }
} }

} }

Fig. 1: Array privatization example

initiate data movement operations and kernel execution as asynchronous activ-
ities, thus enabling an overlap with continuous execution by the host CPU.

Some of the above steps need to be applied repeatedly along with profiling
and feedback information provided by compiler and profilers. The practices and
optimization techniques applied vary depending on the original parallel pattern
and code structures of an application. Some of those techniques are summarized
in the following sections. While these techniques have been used for optimizing
parallel program on CPUs, applying them on GPUs pose different challenges,
particularly when using them in large code bases.

3.1 Array Privatization

Array privatization makes different threads access distinct memory addresses, so
that different threads do not access the same memory address. It is a technique of
taking some data that is common or shared among parallel tasks and duplicating
it so that different parallel tasks can have a private copy to operate. Figure 1
shows an example for array privatization. If we parallelize the triple-nested loop
on the left side of the figure using OpenMP for CPU and only parallelize the
outermost loop, each thread handles the inner two loops. The array A could be
annotated as OpenMP private clause to each thread, thus no modification is
required to keep the memory usage minimal and improve the cache performance.
However this is not the case with OpenACC. In OpenACC, if the compiler
still only parallelizes the outermost loop, multiple threads will be reading and
writing to the same elements of the array A. This will cause data race conditions,
incorrect results and potential crashes. An option here is to use the OpenACC
private clause which is described in [6]. However, if the number of threads is
very large, as typically in GPUs, it is very easy that all copies of the array exceed
the total memory available. Even though sometimes the required memory does
not exceed the available device memory, it is possible that the assigned number
of threads is larger than the number of loop iterations, and in this case some
of the device memory will be wasted since some threads are idle. Also the life
time of variable within a private clause is only for a single kernel instance. This
limits our choice to apply loop scheduling techniques since only the outermost
loop can be parallelized. If the triple nested loop can be parallelized and each
thread executes the innermost statements, thousands of threads still need to be
created. Keeping the array A private to each thread will easily cause an overflow
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#pragma acc kernels loop gang
80: for (k = 0; k <= grid_points [2]-1; k++) {

#pragma acc loop worker
81: for (j = 0; j <= grid_points [1]-1; j++) {

#pragma acc loop vector
82: for (i = 0; i <= grid_points [0]-1; i++) {
83: for (m = 0; m < 5; m++) {
84: rhs[m][k][j][i] = forcing[m][k][j][i];
85: }
86: }
87: }
88: }

Fig. 2: Loop scheduling example

of memory available on the accelerator device. The right side of Figure 1 shows
the array privatized code that addresses this issue. This solution added another
dimension to the original array so that all threads can access different memory
addresses of the data and no data race will happen anymore.

3.2 Loop Scheduling Tuning

When parallelizing loops using OpenACC, parallel/kernels directives are in-
serted around the loop region. With the parallel directive, the user can explic-
itly specify how the loop is scheduled by setting whether the loop is scheduled
in the level of gang, worker or vector. With the kernels directive, however,
loop scheduling is usually left to the compiler’s discretion. Ideally, the compiler
performs loop analysis and determines an optimal loop scheduling strategy. Our
simple experiments show that, when using the kernels directive, the compiler
makes good choices most of the times. But the compiler often opts for the less
efficient loop scheduling when the loop level is more than three. Figure 2 shows
one of the scheduling techniques that delivers efficient loop scheduling. However
the default scheduling by some compiler only applies to the loops in lines 82
and 83. The loops in line 80 and 81 are executed sequentially. This default op-
tion is very inefficient since the two outer most loops are not parallelized. Work
in [24] discusses other loop scheduling mechanisms that could be applied in this
context.

3.3 Memory Coalescing Optimization

The speedup from the parallel processing capability of GPU can be tremen-
dous if memory coalescing is efficiently achieved. GPU has faster memory with
unique data fetching and locality mechanism. In CPU, only one thread fetches
consecutive memory data into the cache line, so the data locality is limited to
only one thread. In GPU, however, consecutive threads fetch consecutive mem-
ory data into the cache line allowing better data locality. For instance, the code
in Figure 2 is already optimized for memory coalescing. The i loop is vector-
ized with the rightmost dimension of rhs and forcing is i. In the original serial
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code version, the memory access pattern of rhs and forcing are rhs[k][j][i][m] and
forcing[k][j][i][m], respectively. But for memory coalescing purposes, we need to
reorganize the data layout so that the dimension “m” is not on the farther right.
Since C language is row-major, the right most dimension is contiguous in mem-
ory. We need the threads to access (i.e. the vector loop) the right most dimen-
sion. So after data layout reorganization, the memory access pattern becomes
rhs[m][k][j][i] and forcing[m][k][j][i].

3.4 Data Motion Optimization

Data transfer overhead is one of the important factors to consider when deter-
mining whether it is worthwhile to accelerate a workload on accelerators. Most
of the NPB benchmarks consist of many global variables that persist through-
out the entire program. An option to reduce data transfer will be to allocate
the memory for those global variables at the beginning of the program so that
those data reside on the device until the end of the program. Since some portion
of the code cannot be ported to the device, we could use update directive to
synchronize the data between the host and device.

3.5 Cache Optimization

NVIDIA Kepler GPU memory hierarchy has several levels of memory, including
global memory, then L2 cache for all SMs and the registers, L1 cache, shared
memory and read-only data cache for each SM. In Kepler GPU, L1 cache is
reserved only for local memory accesses such as register spilling and stack data.
Global loads are cached in L2 cache only [8]. Here the usage of both L1 and L2 is
controlled by the hardware and they are not manageable by the programmer. The
shared memory can be utilized by the cache directive in OpenACC. Although the
read-only data cache is also controlled by the hardware, the programmer can give
some hints in the CUDA kernel file to tell the compiler what the read-only data
list is. Since the read-only data cache is a device specific memory, OpenACC does
not have any directive to utilize this cache. However, when the user specifies the
device type when using OpenACC, the compiler can perform some optimizations
specific to the specified device. We implemented this optimization in the compiler
used so that the compiler can automatically determine the read-only data in a
kernel by scanning all data in that kernel and then add “const restrict ” for
all read-only data and add “ restrict ” for other data that has no pointer alias
issue. These prefix are required in CUDA if the user wants the hardware to cache
the read-only data [8]. This compiler optimization can improve the performance
significantly if the read-only data is heavily reused.

3.6 Array Reduction Optimization

Array reduction means every element of an array needs to do reduction. This
is supported in OpenACC specification which only supports scalar reduction.
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array qq[4]

array qq[4]

array qq[4]

array q[4]

Thread 0

Thread 1

Thread 2

(a) OpenMP solution

array q[4]

…...NN 

iterations

q0 q1 q2 q3

(b) OpenACC solution 1

array q[4]

array qq[NN*4]

(c) OpenACC solution 2

Fig. 3: Solutions of array reduction in EP benchmark.

Different programming models solve this issue differently. As shown in Figure 3,
there are several ways to solve the array reduction in array q in EP benchmark.
In the OpenMP version, each thread has its own private array qq to store the
partial count of q, for the purpose of reducing the overhead of atomic update of
shared variables. Thus, each thread only needs to perform an atomic update on q
with its own partial sum qq. Since OpenACC does not support array reduction,
Lee et al. [20] decomposes the array reduction into a set of scalar reductions
which is shown in Figure 3 (b). This implementation is not scalable as it cannot
handle large array reduction, and the size of the result array must be known at
compile time. Our solution, as shown in Figure 3 (c), uses the array privatization
technique to make a copy of q and expand it by another dimension with size
NN (declared as new variable qq). In this way, each thread does its own work
independently and writes the result into its own portion of the global memory.
Finally, each element of q can be obtained by doing reduction just once with qq.

3.7 Scan Operation Optimization

The NAS IS benchmark has both inclusive and exclusive prefix-sum/scan oper-
ations. The inclusive scan takes a binary operator

⊕
and an array of N elements

[a0, a1, ..., aN−1] and returns the array [a0, (a0
⊕

a1), ..., (a0
⊕

a1
⊕

...
⊕

aN−1)].
Exclusive scan is defined similarly but shifts the output and uses an identity value
I as the first element. The output array is [I, a0, (a0

⊕
a1), ..., (a0

⊕
a1

⊕
...
⊕

aN−2)].
In scan loop, an element in the output array depends on its previous element,
and because of such data dependence, it cannot be parallelized by the loop di-
rective in OpenACC. To overcome such limitations, we provided some extensions
to the OpenACC standard. We introduced a new scan clause to the loop direc-
tive followed by usage of recursive algorithm in [17] to handle the scan operation
for arbitrary input array size. We implemented this optimization in OpenUH
compiler.

4 Performance Evaluation

The experimental setup is a machine with 16 cores Intel Xeon x86 64 CPU with
32GB main memory, and an NVIDIA Kepler GPU card (K20) with 5GB global
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Table 1: Comparing elapsed time for NPB-ACC, NPB-SER, NPB-OCL and
NPB-CUDA (time in seconds), “-” implies no result due to “out ofmemory”
issue. For NPB-CUDA, only LU, BT and SP are accessible. Data size increases
from A to C, ∼16x size increase from each of the previous classes. The “Tech-
niques Applied” numbers refer to the optimizations described in corresponding
sections. Other than listed techniques, we have optimized all of our OpenACC
implementations including using data motion optimizations as well.
Benchmark EP CG FT IS

Data Size A B C A B C A B C A B C

NPB-SER 46.56 187.02 752.03 2.04 101.80 269.96 6.97 79.42 390.35 0.99 4.04 17.00
NPB-OCL 0.27 0.82 2.73 0.36 13.42 35.39 1.49 32.55 - 0.04 0.35 1.74
NPB-ACC 0.49 1.96 7.85 0.36 9.51 21.28 1.18 9.20 - 0.06 0.23 1.94

Techniques
Applied

3.1, 3.3, 3.6 3.5 3.1, 3.3 3.7

Benchmark MG LU BT SP

Data Size A B C A B C A B C A B C

NPB-SER 2.57 11.48 99.39 60.38 264.71 1178.97 93.14 387.51 1626.33 52.17 225.26 929.85
NPB-OCL 0.13 0.61 5.48 5.32 16.70 54.88 46.12 167.48 - 11.84 54.35 288.40
NPB-ACC 0.24 1.12 7.55 6.64 26.12 103.97 15.25 63.61 226.70 3.45 15.90 57.46
NPB-CUDA - - - 5.79 19.58 75.06 13.08 53.46 216.98 2.47 11.17 43.16

Techniques
Applied

3.1, 3.2, 3.5 3,1, 3.3, 3.5 3,1, 3,2, 3.3, 3.5 3,1, 3.2, 3.3

memory. We use OpenUH compiler to evaluate the performance of C programs
of NPB on GPUs. This open source compiler provides support for OpenACC
1.0 at the time of writing this paper. Although implementations for OpenACC
2.0 are beginning to exist, they are not robust enough to be used to evaluate
NPB-type benchmarks. For evaluation purposes, we compare the performances
of our OpenACC programs with serial and third-party well tuned OpenCL [23]
and CUDA programs [1] (that we had access to) of the NAS benchmarks. All
OpenCL benchmarks run on GPU rather than CPU. We used GCC 4.4.7 and
-O3 flag for optimization purposes. The CUDA version used by the OpenACC
compiler is CUDA 5.5. The OpenCL codes are compiled by GCC compiler and
link to CUDA OpenCL library.

Table 1 shows the execution time taken by NPB-SER, NPB-OCL and NPB-
ACC, which are the serial, OpenCL and OpenACC versions of the NPB bench-
marks, respectively. For the FT benchmark, OpenCL and OpenACC could not
execute for problem size Class C. The reason being, FT is memory limited; the
Kepler card in use ran out of memory. Same to do with the OpenCL program
for BT benchmark. However this was not the case with OpenACC. The reason
being: OpenCL allocated the device memory for all the data needed in the begin-
ning of the application. With OpenACC program, different solver routines have
different memory coalescing requirements, as a result, different routines have dif-
ferent data layout. For those data, OpenACC program only allocates the device
memory in the beginning of the solver routines and frees the device memory
before exiting these routines. This explains that the data in the OpenCL pro-
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Fig. 5: NPB-ACC Performance improve-
ment after optimization

gram are active throughout the full application, but for the OpenACC program,
some data is only active in some of the routines, hence saving the total memory
requirement at a given time.

Figure 4 shows the speedup of NPB-ACC over NPB-SER for the benchmarks
that have been optimized. It is quite clear that all the benchmarks show signif-
icant speedup, especially EP. This is because EP is an embarrasingly parallel
benchmark that has only few data transfers and our optimization technique en-
abled all the memory accesses to be nicely coalesced. Most of the benchmarks
observed increase in speedup as the data problem size increased, except IS. This
is because, IS uses buckets to sort an input integer array, the value of the bucket
size is fixed as defined in the benchmark, no matter what the data size is. As a
result, when the data size becomes larger, the contention to each bucket becomes
more intense decreasing the performance to quite an extent. However this does
not affect the numerical correctness due to atomic operations in place to prevent
data races.

We measure the effectiveness of the potential optimizations applied in Fig-
ure 5 by comparing the baseline and the optimized versions of the benchmarks.
The baseline versions use only array privatization in order to parallelize the code
and data motion optimization to eliminate unnecessary data transfer overhead
and not any other optimizations discussed. The optimized versions exploit the
optimizations discussed earlier.

IS benchmark demonstrates much improvement from the baseline version.
This is due to the scan operation discussed earlier. CG mainly benefits from
cache optimization, the rest of the optimizations all seem to have a major impact
on the benchmark’s performance. FT benchmark shows improvement due to
Array of Structure (AoS) to Structure of Array (SoA) transformation since the
memory is not coalesced in AoS data layout but coalesced in SoA data layout.
Note that the execution time of the three pseudo application benchmarks LU,
BT and SP are even less than 20% of the time taken by the baseline version.
LU and BT observed over ∼50% and ∼13% of performance improvement using
cache optimization, since both the benchmarks extensively use read-only data.
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ison with NPB-CUDA

LU, BT and SP benchmarks benefit significantly from memory coalescing
optimizations since in the serial code the memory access is not coalesced at all
for GPU architecture. Memory coalescing requires explicit data layout transfor-
mation. We observed that tuning loop scheduling is very crucial for MG, BT
and SP benchmarks since these benchmarks have three or more levels of nested
loops. The compiler could not always identify the best loop scheduling option,
requiring the user to intervene.

These analysis of benchmark results indicate that it is insufficient to simply
insert directives to an application no matter how simple or complex it is. It is
highly essential to explore optimization techniques, several of those discussed in
this paper, to not only give the compiler adequate hints to perform the necessary
transformations but also perform transformations that can exploit the target
hardware efficiently.

To evaluate our optimizations further, we compare the NPB-ACC with well-
tuned code written with the low-level languages OpenCL (NPB-OCL) and CUDA
(NPB-CUDA). Figure 6 and Figure 7 show the corresponding results. Figure 6
shows that the EP program using OpenACC is around 50% slower than that
of the OpenCL program. This is because the OpenACC version uses array pri-
vatization, which increases the device memory in turn exceeding the available
memory limit. Therefore we use the blocking algorithm to move data chunk by
chunk into the device. We launch the same kernel multiple times to process each
data chunk. The OpenCL program, however, uses the shared memory in GPU
and does not need to use array privatization to increase the GPU device memory,
therefore it only needs to launch the kernel once. Faster memory access through
shared memory and reduced overhead due to less number of kernel launches im-
proved the results for OpenCL. Although OpenACC provides a cache directive
that has similar functionalities to CUDA’s shared memory, the implementation
of this directive within OpenACC compiler is not technically mature enough yet.
This is one of the potential areas where support in OpenACC can be improved.

Performance of OpenACC programs of benchmarks BT and SP are much
better than that of the OpenCL programs. The reason is two-fold. First up, the
OpenCL program does not apply the memory coalescing optimization; mem-
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ory accesses are highly uncoalesced. Secondly, the program does not apply loop
fission optimization; there are very large kernels. Although the large kernel con-
tains many parallelizable loops, they are only executed sequentially inside the
large kernel. On the contrary, the OpenACC program uses loop fission, thus
breaking the large kernel into multiple smaller kernels and therefore exposing
more parallelism.

The OpenACC program for benchmark MG appears to be slower than that
of the OpenCL program. This is because former program uses array privatiza-
tion, which needs to allocate the device memory dynamically in some routines,
however the latter uses shared memory, which has faster memory access and no
memory allocation overhead. The OpenACC program for benchmark FT is faster
than OpenCL, since OpenACC transforms the AoS to SoA data layout to enable
memory coalescing. The OpenACC program for benchmark LU is slower than
OpenCL since the former privatizes small arrays into the GPU global memory,
but OpenCL uses the small array inside the kernel as in they will be allocated
in registers or possibly spilled to L1 cache. The memory access from either reg-
ister or L1 cache is much faster than that from the global memory as used by
OpenACC.

Figure 7 shows the normalized performance of NPB-ACC and NPB-CUDA.
We found CUDA programs for only the pseudo applications, i.e. LU, BT and
SP, hence we have only compared OpenACC results of these applications with
CUDA. The result shows that OpenACC programs for LU, BT and SP bench-
marks achieve 72%∼87%, 86%∼96% and 72%∼75% to that of the CUDA pro-
grams, respectively. The range denotes results for problem sizes from CLASS A
to C. We see that the performance gap between CUDA and OpenCL is quite
small. The reasoning for the small performance gap is the same as that we
have explained for the OpenCL LU benchmark. It is quite evident that careful
choice of optimization techniques for high-level programming models can result
in reaching performance very close to that of a well hand-written CUDA code.
We believe that as the OpenACC standard and its implementation evolve, we
might even be able to obtain better performance than CUDA. Thus successfully
achieving portability as well.

5 Discussion

5.1 Programmability

Programming heterogeneous systems can be simplified using OpenACC-like directive-
based approaches. An expected advantage is that they help maintain a single
code base catering to multiple targets, leading to considerably lesser code main-
tenance. However, in order to achieve good performance, it is insufficient to
simply insert annotations. The user’s intervention is required to manually ap-
ply certain code transformations. This is because the compiler is not intelligent
enough to determine the optimal loop scheduling for accelerated kernels and
optimize the data movement automatically. With respect to memory coalescing
requirement, currently there is no efficient mechanism to maintain different data
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layout for different devices, the user has to change the data layout. There is no
compiler support that can effectively utilize the registers and shared memory in
GPU that play an important role in GPUs. Data movement is one of the most
important optimization techniques. So far it has been the user’s responsibility
to choose the necessary data clause and to move data around in order to get
the best performance. If the compiler provides suitable hints, this technique can
prove to be quite useful.

5.2 Performance Portability

Achieving performance portability can be quite tricky. Different architectures
demand different programming requirements. Merely considering a CPU and a
GPU; obtaining optimal performance from CPU largely depends on locality of
references. This holds good for GPUs as well, but the locality mechanism of
the two architectures are different. The amount of computation that a CPU
and a GPU can handle also differs significantly. It is not possible to maintain a
single code base for two different architectures unless the compiler automatically
handles most of the optimizations internally. Performance portability is not only
an issue with just the architecture, but also an issue that different compilers can
provide a different implementation for a directive/clause. Moreover the quality
of the compilation matters significantly. For example, the OpenACC standard
allows the user to use either parallel or kernels in the compute region. The
kernels directive allows the compiler to choose the loop scheduling technique
to be applied i.e. analyze and schedule each loop level to gang/worker/vector.
A compiler can use its own technique to schedule the loop nest to nested gang,
worker and vector; this is typically not part of the programming model standard.
As a result, the performance obtained using the kernels directive is different for
different compilers. On the contrary, the code that uses parallel loop directive
is more portable since this allows the user to have control over adopting the loop
scheduling explicitly. Also the transformations of the parallel directive by most
of the OpenACC compilers are similar.

6 Related Work

The performance of NPB benchmarks are well studied for conventional multi-
core processor based clusters. Results in [18] show that OpenMP achieves good
performance for a shared memory multi-processor. Other related works also in-
clude NPB implementations of High-Performance Fortran (HPF) [15], Unified
Parallel C (UPC) [2] and OpenCL [23]. Pathscale ported an older version of
NPB (NPB 2.3) using OpenACC [9], but only SP and IS could be compiled
and executed successfully. Moreover their implementation of the benchmark, IS,
does not use the challenging bucket sorting algorithm; this algorithm poses ir-
regular memory access pattern challenges that is not straightforward to solve.
However, we do use this sorting algorithm and overcome the challenges by using
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OpenACC’s atomic and scan operation extensions. With high performance com-
puting systems rapidly growing, hybrid programming models become a natural
programming paradigm for developers to exploit hardware characteristics. Wu et
al. [25] discuss a hybrid OpenMP + MPI version of SP and BT benchmarks. Pen-
nycook et al. [21] describe the MPI+CUDA implementation of LU benchmark.
The hybrid implementations commonly yield better performance if communica-
tion overhead is significant for MPI implementation and if computation for a
single node is well parallelized with OpenMP. NAS-BT multi-zone benchmark
was evaluated in [11] using OpenACC and OpenSHMEM hybrid model.

Grewe et al. [16] presented a compiler based approach that automatically
translate OpenMP program to optimized OpenCL code for GPUs and they eval-
uated all benchmarks in NPB suite. Lee et al. [20] parallelized EP and CG from
NPB suite using OpenACC, HMPP, CUDA and other models and compared
the performance differences. But our implementation is different from theirs for
these two benchmarks. Inspired by the similar subroutines of the benchmarks
in NPB, Ding et al. [13] [12] developed a tool that can conduct the source code
syntactic similarity analysis for scientific benchmarks and applications.

7 Conclusion

This paper discusses practices and optimization techniques for parallelizing and
optimizing NAS parallel benchmarks for GPGPU architecture using the Ope-
nACC high-level programming model. We present performance and speedup
obtained by using an open source OpenACC compiler. We believe these tech-
niques can be generally applicable for other programming models and scientific
applications. We also analyze the effectiveness of these optimizations and mea-
sure their impact on application performance. Poorly selected options or using
system default options for optimizations may lead to significant performance
degradation. We also compared the performance of OpenACC NPB with that
of the well-tuned OpenCL and CUDA versions of the benchmarks. The results
indicate we achieve performance close to that of the well-tuned programs. This
shows that using high-level programming directives and with the right optimiza-
tion techniques, we are not only achieving the much needed portability but also
achieving performance close to that of well-tuned programs. We also investigated
and implemented the scan and cache optimizations in the compiler used. As fu-
ture work, we will identify strategies to automate optimizations that we have
used in our compiler for better programmability and perhaps performance.
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