
Reduction Operations in Parallel Loops for GPGPUs

Rengan Xu, Xiaonan Tian, Yonghong Yan,
Sunita Chandrasekaran, and Barbara Chapman

Dept. of Computer Science, University of Houston, Houston, TX, 77004, USA
{rxu6,xtian2,yyan3,schandrasekaran,bchapman}@uh.edu

ABSTRACT
Manycore accelerators offer the potential of significantly im-
proving the performance of scientific applications when of-
floading compute intensive portions of programs to the accel-
erators. Directive-based programming models such as Ope-
nACC and OpenMP are high-level programming model for
users to create applications for accelerators by annotating
region of code for offloading with directives. In these pro-
gramming models, most of the offloaded kernels are data
parallel loops processing one or multiple multi-dimensional
arrays, and it is often that scalar variables are used in the
parallel loop body for reduction operations. Since reduc-
tion operation itself has loop-carried dependency preventing
the parallelization of the loops, this could have a significant
impact on the performance if not handled properly.

In this paper, we present the design and parallelization
of reduction operations in parallel loops for GPGPU accel-
erators. Using OpenACC as the high-level directive-based
programing model, we discuss how reduction operations are
parallelized when appearing in each level of the loop nest
and thread hierarchy. We present how we handle the map-
ping of the loops and parallelized reduction to single- or
multiple-level parallelism of GPGPU architectures. These
algorithms have been implemented in the open source Ope-
nACC compiler OpenUH. We compare our implementation
with two other commercial OpenACC compilers using test
cases and applications, and demonstrate better robustness
and competitive performance than others.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features—Reduction

General Terms
Design, Algorithms, Measurement
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1. INTRODUCTION
Heterogeneous architectures that comprises of commod-

ity CPUs and computational accelerators such as GPGPUs
have been increasingly adopted in both large scale super-
computers, workstations and desktops for engineering and
scientific applications. These accelerators provide additional
massively parallel computing capabilities to the users, while
preserving the flexibilities of CPU for different workloads.
However, effectively tapping their full potential may become
difficult, due to the programmability challenges faced by
users when mapping computation algorithms to such hybrid
and heterogeneous architectures.

Programming models such as CUDA[1] and OpenCL[4] for
GPGPUs offer users programming interfaces with execution
models that closely matches the GPGPU architectures. Ef-
fectively using these interfaces for creating highly optimized
applications require programmers to thoroughly understand
the underlying architecture, as well as to significantly change
the program structures and algorithms. This affects both
productivity and performance. An alternative approach is
to use the high-level directive-based programming models,
e.g. HMPP[9], OpenACC [2] and OpenMP [5]. These mod-
els allow the user to insert directives and runtime calls into
the existing source code, making partial or full portion of
Fortran or C/C++ codes to be executed on accelerators.
By using directives, programmers can give hints to compil-
ers to perform certain transformation and optimizations on
the annotated code region. The user can insert directives
incrementally to parallelize and optimize the application,
enabling a productive migration path for legacy codes.

The region that is offloaded to the accelerator is referred
to a computational kernel. Most of the offloaded kernels
are data parallel loops processing one or multiple multi-
dimensional arrays, and the loops will be executed in paral-
lel on accelerator devices such as GPGPUs. It is also very
common that scalar variables are used in the parallel loop
body for reduction operations. Reduction is an operation
that uses a binary associative operator to operate an input
array and generate a single output value. Since reduction
operation itself has loop-carried dependency preventing the
parallelization of the loops, this could have a significant im-
pact on the performance if not handled properly. However,
they can be computed out of order thanks to the associativ-
ity feature of binary operator, thus enabling parallelization
to a certain degree.



In this paper, we present the design and parallelization
of reduction operations in parallel loops for GPGPU accel-
erators. Using OpenACC as the high-level directive-based
programing model, we discuss how reduction operations are
parallelized when appearing in each level of the loop nest
and thread hierarchy, e.g. the outer loop with gang(coarse-
grain), mid-level with worker(fine-grain) and inner level with
vector parallelism. We present how we handle the map-
ping of the loops and parallelized reduction to single- or
multiple-level paralellisim of GPGPU architectures. We im-
plemented these algorithms in the open source OpenACC
compiler OpenUH [15], and created a testsuite that provides
different use cases of reduction operations for performance
evaluation. We compare our results to those using two other
commercial OpenACC compilers, and our algorithms passed
all reduction usage cases and delivered competitive perfor-
mance to other compilers.

The main contributions of this paper include:

• We propose several algorithms to parallelize the reduc-
tion operation in parallel loops for GPGPUs and im-
plement these algorithms in an open source OpenACC
compiler.

• Our algorithms cover all possible cases of reduction
operations in three levels of parallelism, all reduction
operator types and operand data types.

• We also provided a testsuite and three well-known re-
duction benchmarks in this work. The evaluations
show competitive performance compared to commer-
cial OpenACC compilers.

The organization of this paper is as follows: Section 2 dis-
cusses the mapping strategies of high-level parallel loops to
the multiple-level paralelism of GPGPU architecture. Sec-
tion 3 discusses the pallelization strategies for reduction op-
erations of parallel loops. Performance results are discussed
in Section 4. Section 5 highlights related work in this area.
We conclude our work in Section 6.

2. PARALLELISM MAPPING
The processor architecture of GPGPUs and CPUs are fun-

damentally different. For example, NVIDIA’s GPGPU con-
sists of multiple streaming multiprocessors (SMs), and each
SM consists of many scalar processors (SPs, also referred
to as cores). Each GPGPU supports the concurrent execu-
tions of hundreds to thousands of threads, and each thread
is executed by an SP. The smallest scheduling and execution
unit is called a warp that has 32 threads. Warps of threads
are grouped together into a thread block, and blocks are
grouped into a grid. Figure 1 shows how the blocks can
be organized into a one or two or three-dimensional grid of
thread blocks. Thread blocks cannot synchronize with each
other while the threads within a block can.

The GPU has a global memory space that is accessible
by all threads in the grid and this is the only space that
the CPU memory can communicate with. Shared memory
is allocated per thread block,whose memory size can be con-
figurable by the programmer. Because the shared memory
is on-chip, the latency is much lower than global memory.

2.1 Programming using OpenACC
Programming GPGPUs has been made possible by CUDA

and OpenCL, however programmers typically need to not

Figure 1: GPGPU Thread Block Hierarchy

only thoroughly understand the GPU architecture but also
need to rewrite the application source code completely. To
that end, OpenACC, an emerging directive-based parallel
programming standard, provides a viable approach that pri-
marily aims to improve programmer productivity by simpli-
fying parallel programming for systems with accelerators.

OpenACC uses parallel or kernels constructs to define
a compute region that will be executed in parallel on the ac-
celerator device. The loop construct is used to specify how
the loop iterations to be distributed. The purpose of using
parallel and kernels is that parallel construct provides
more control to the user while the kernels provides more
control to the compiler. The reduction clause is allowed
on a loop construct. The execution model of OpenACC as-
sumes that the main program runs on the host, while the
compute-intensive regions of the main program are offloaded
to the attached accelerator. In the memory model, usu-
ally the accelerator and the host CPU consist of separate
memory addresses to prevent conflicts between CPU and
accelerators. OpenACC 1.0 discusses different types of data
transfer clauses. Possible runtime routines to control data
lifetimes have been proposed in the 2.0 specification.

The hardware independence makes OpenACC more at-
tractive for codes that need to run on different architectures.
However mapping loops to a different architecture is an in-
teresting challenge. Compilers are relied upon to provide
support for mapping onto more than one type of an acceler-
ator chip and provide necessary optimizations for the chosen
hardware.

2.2 Mapping Parallel Loops onto GPGPU ar-
chitectures

OpenACC supports three levels of parallelism: coarse-
grained parallelism “gang”, fine-grained parallelism “worker”
and vector parallelism “vector”. The programmer can create
several gangs and a single gang may contain several workers
and a single worker may contain several vector threads. The
iterations of a loop can be executed in parallel by distribut-
ing the iterations among one or multiple levels of parallelism
of GPGPU architectures. Mapping loops to the hardware in
OpenACC is implementation dependent. Figure 2 shows a
triple nested loop example that exhibits all the three levels
of parallelism. In this example, assume each loop can be ex-
ecuted in parallel, then k loop is distributed across all gangs,
j loop is distributed across all workers in a single gang, and



#pragma acc loop gang
for(k=k_start; k<k_end; k++){

#pragma acc loop worker
for(j=j_start; j<j_end; j++){

#pragma acc loop vector
for(i=i_start; i<i_end; i++){

...
}

}
}

Figure 2: Loop Nest Example with OpenACC Parallelisms

Table 1: CUDA Terminology in OpenACC Implementation

Term Description

threadIdx.x thread index in X dimension of a thread block
threadIdx.y thread index in Y dimension of a thread block
blockDim.x no. of threads in X dimension of a thread block
blockDim.y no. of threads in Y dimension of a thread block
blockIdx.x block index in X dimension of the grid
gridDim.x no. of blocks in X dimension of the grid

i loop is distributed across all vector threads of one worker.

Our OpenACC implementation is built on top of the SIMT
execution model of CUDA. Table 1 shows the CUDA ter-
minologies that is used in our OpenACC implementation.
In OpenUH compiler, gang maps to a thread block, worker
maps to the Y-dimension of a thread block and vector maps
to the X-dimension of a thread block. Based on these defini-
tions, the implementation details for the loop nest discussed
in Figure 2 is shown in Figure 3. Here we add the start off-
set to the index of each level of threads so that the working
threads start from 0 that effectively reduce the thread diver-
gence. Another possible implementation is to get the thread
id and then determine whether the id is greater than the
start position and lesser than the end position in each loop
level. In that case, the threads whose ids are lesser than the
start position will not participate in the computation and
will be idle all the time leading to thread divergence. In
our implementation, the threads in each loop level increase
along with their own stride size, so that each thread pro-
cesses multiple elements of the input data. This solves the
issue of limited number of threads availability in the hard-
ware platform. Our implementation is designed in a way
that it is independent of the number of threads used in each
loop level. However, the appropriate number of threads may
enable coalesced memory access and improve performance.

In the loop nest example, we assume that all the iterations
are independent, but most time the loop nest may contain
reduction operation and the reduction may appear anywhere
on the loop nest. In the next section, we will discuss such
cases and how they are implemented in our OpenUH com-
piler.

3. PARALLELIZATION OF REDUCTION OP-
ERATIONS FOR GPGPUS

The reduction operation applied to a parallel loop uses a
binary operator to operate on an input array and generates
a single output value for that array. Each thread has its
own local segments copy of the input array when the loop is
distributed among threads. The operation that consolidates

k = blockIdx.x + k_start;
while(k < k_end){

j = threadIdx.y + j_start;
while(j < j_end){

i = threadIdx.x + i_start;
while(i < i_end){

...
i += blockDim.x;

}
j += blockDim.y;

}
k += gridDim.x;

}

Figure 3: Implementation of Example Loop Nest

the results from the thread-local copies of the segments using
the reduction operation is the issue that we are addressing in
this paper. The approach to performing parallel reductions
depends on how the loop nests are mapped to the GPGPU’s
thread hierarchy. Moreover, reduction operation always im-
plies a barrier synchronization, this may introduce runtime
overhead, hence we need to be cautious to only include the
synchronization when necessary.

Although most reduction operations are inherently not
parallel, for those that have the properties of associativity
and commutativity [3], we are able to apply the divide and
conquer method to achieve parallel execution. That is, let us
assume there are three input variables, a1, a2 and a3, and
the reduction operator ‘sum’ does a1+a2+a3. The associa-
tivity of a binary operator is a property that determines how
operators of the same order of operations are grouped with-
out using parentheses. Since each reduction uses only one
operator and this operator has equal precedence, the opera-
tion can be grouped differently. For instance, (a1 +a2) +a3
and a1+(a2+a3) will deliver the same output as a1+a2+a3.
The commutativity of a binary operator is a property that
changes the order of operations and does not change the re-
sult. For instance, a3 +a1 +a2 and a2 +a3 +a1 will deliver
the same output as a1+a2+a3. All of the OpenACC reduc-
tion operators satisfy both associativity and commutativity
properties. So the reduction operations can be performed in
any order as long as it uses a single operator and includes
all of the input data. These are the vital properties that we
will be applying in our implementation.

3.1 Reduction in Single-level Thread Parallelism
The loop nest where a reduction operation is applied could

be mapped to one or multiple level thread hierarchy. For ex-
ample, OpenACC includes three-level of parallelisms: gang,
worker and vector, reduction can appear within any of these
levels. Let us first discuss the case where the reduction op-
eration appears in only one level of the parallelism.

3.1.1 Reduction only in vector
Figure 4(a) shows an example of reduction occurring only

in vector, where the worker and gang loops (k and j ) can
be executed in parallel, whereas the vector loop (i) needs
to perform reduction. There are different strategies to par-
allelize this case, as shown in Figure 6. Figure 6 (a) shows
the data and worker and vector threads laid out in one gang
before doing reduction. Each row is one worker that in-
cludes multiple vector threads. Since vector reduction hap-
pens in each worker, each row needs to do reduction and
finally each worker should have one reduction result. In this
example, there are 4 workers and each worker has 4 vector



#pragma acc parallel \
copyin(input) \
copyout(temp)

{
#pragma acc loop gang
for(k=0; k<NK; k++)
{

#pragma acc loop worker
for(j=0; j<NJ; j++)
{

int i_sum = j;
#pragma acc loop vector \

reduction (+: i_sum)
for(i=0; i<NI; i++)

i_sum+=input[k][j][i];
temp[k][j][0] = i_sum;

}
}

}

(a) Reduction in vector

#pragma acc parallel \
copyin(input) \
copyout(temp)

{
#pragma acc loop gang
for(k=0; k<NK; k++)
{

int j_sum = k;
#pragma acc loop worker \

reduction (+: j_sum)
for(j=0; j<NJ; j++)
{

#pragma acc loop vector
for(i=0; i<NI; i++)

temp[k][j][i]=input[k][j][i];
j_sum += temp[k][j][0];

}
temp[k][0][0] = j_sum;

}
}

(b) Reduction in worker

sum = 0;
#pragma acc parallel \

copyin(input) \
create(temp)

{
#pragma acc loop gang \

reduction (+:sum)
for(k=0; k<NK; k++)
{

#pragma acc loop worker
for(j=0; j<NJ; j++)
{

#pragma acc loop vector
for(i=0; i<NI; i++)

temp[k][j][i]=input[k][j][i];
}
sum += temp[k][0][0];

}
}

(c) Reduction in gang

Figure 4: Reduction in Single-level Thread Parallelism Example

k = blockIdx.x;
while(k < NK){

j = threadIdx.y;
while(j < NJ){

i = threadIdx.x;
int i_sum = j;

/∗ private for each vector ∗/
int i_sum_priv = 0;
while(i < NI){

i_sum_priv += input[k][j][i];
i += blockDim.x;

}
sbuf[threadIdx.x+threadIdx.y*

blockDim.x]= i_sum_priv;
__syncthreads ();
i_sum = reduce_vector(sbuf , j);
temp[k][j][0] = i_sum;
j += blockDim.y;

}
k += gridDim.x;

}

(a) Reduction in vector

k = blockIdx.x;
while(k < NK){

j = threadIdx.y;
int j_sum = k;

/∗ private for each worker ∗/
int j_sum_priv = 0;
while(j < NJ){

i = threadIdx.x;
while(i < NI){

temp[k][j][i]=input[k][j][i];
i += blockDim.x;

}
j_sum_priv += temp[k][j][0];
j += blockDim.y;

}
if(threadIdx.x == 0)

sbuf[threadIdx.y] = j_sum_priv;
__syncthreads ();
j_sum = reduce_worker(sbuf , k);
k += gridDim.x;

}

(b) Reduction in worker

k = blockIdx.x;
sum = 0;
/∗ private for each gang ∗/
int sum_priv = 0;
while(k < NK){

j = threadIdx.y;
while(j < NJ){

i = threadIdx.x;
while(i < NI){

temp[k][j][i]=input[k][j][i];
i += blockDim.x;

}
j += blockDim.y;

}
sum_priv += temp[k][0][0];
k += gridDim.x;

}
if(threadIdx.x == 0 &&

threadIdx.y == 0)
partial[blockIdx.x]= sum_priv;

(c) Reduction in gang

Figure 5: Implementation for Reduction Examples in Figure 4
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Figure 6: Parallelization Comparison for Vector Reduction. (a) includes the original threads layout in a thread block. In (b),
each vector thread works on each column data and the reduction results are stored in the first row. In (c), each vector thread
works on each row data and the reduction results are stored in the first column. The data inside the dashed rectangle are
contiguous in memory.



threads

iterations

Figure 7: Interleaved Log-step Reduction. Synchronization
is inserted after each iteration and before the next iteration.
Green represents active threads while the grey represents
inactive threads in each iteration.

threads, so four vector reduction results should be gener-
ated. Since NVIDIA GPU provides very low latency shared
memory, the reduction can be moved to the shared memory
to reduce memory access latency. We present two differ-
ent implementation strategies in Figure 6 (b) and (c). In
both these strategies, each vector thread first creates a pri-
vate variable and does the partial reduction itself and then
all the partial private reduction values are stored into the
shared memory. But how these data are stored and which
thread works on which data can have a significant impact
on the performance.

Figure 6(b) uses a strategy where the data and the threads
layout are transposed in the shared memory, so the reduction
in every row of the original thread block becomes the reduc-
tion in every column of the thread block and the final four
reduction results are stored in the first row. This approach
increases memory divergence since the data that needed to
use reduction are not stored contiguously in the shared mem-
ory. This is because a warp is the smallest execution unit for
GPGPUs and instructions are SIMD-synchronous within a
warp.

Figure 6(c) shows yet another approach which is imple-
mented in OpenUH. In this approach, the thread layout is
the same as the data in the global memory and the layout
of the threads working on these data still keep the same.
Therefore the vector reduction happens in each row and the
final reduction values are stored in the first column of the
shared memory. Thus, the data that needs to be reduced are
stored contiguously in the shared memory. Although mem-
ory divergence may still happen, this issue could be solved
by unrolling the last 6 iterations where the reduction data
size are 64, 32, 16, 8, 4 and 2. Actually in our implemen-
tation, we unroll all iterations since the thread block size is
limited to less or equal to 1024 threads in the hardware we
are using. Vector size should be a multiple of the warp size.

For both Figure 6(b) and (c), the vector threads in the
shared memory do the reduction using the interleaved log-
step reduction algorithm [10] shown in Figure 7.

A point to note is that the initial value of the variable
that needs to be reduced may have a different value for the
private copy of that variable. For example, the initial value
of i sum in Figure 4(a) is j, but the initial value for the
private copy of the variable i sum priv for each thread is 0
(shown in Figure 5(a)). In most of the implementations, the

initial value is processed after the vector reduction algorithm
is done. For instance, the initial value is summed for +
reduction or multiplied for * reduction.

3.1.2 Reduction only in worker
Figure 4 (b) shows an example of reduction occurring only

in worker, where the gang and vector loops (k and i) can
be executed in parallel, whereas the worker loop (j loop)
has to do the reduction. Again we present two paralleliza-
tion strategies in Figure 8(b) and (c). In both implemen-
tations, each worker creates a private variable and does the
private partial reduction first, then all the private reduction
data computed by all workers will be stored into the shared
memory for the final reduction. But the next step they go
to different paths.

In Figure 8(b), the original vertically layout workers are
placed into the shared memory horizontally. That is, the
transposed threads work on the transposed data elements
in the shared memory. Only the first row in the shared
memory contains the useful data while the other rows have
duplicate data as the first row. All rows need to do the same
interleaved log-step reduction algorithm as vector reduction,
final worker reduction results are stored in the first column
of the shared memory. Since all rows are the same, actually
only the first element of the first row has the useful final
reduction result. The advantage of this approach is that the
implementation follows the worker reduction concept very
strictly. But the disadvantage is that it consumes a lot of
shared memory which is a scarce resource in the GPGPU
architecture, and it needs to insert synchronization between
each iteration in the reduction algorithm because the work-
ers are not consecutive or they are not warp threads.

The OpenUH compiler, however, employs another differ-
ent strategy shown in Figure 8(c). First, the workers also
need to do partial reduction by creating private variable.
Next the first vector thread of each worker stores the par-
tial reduction into the shared memory, then all the original
vector threads of workers use the interleaved log-step reduc-
tion algorithm to generate the final reduction result. Note
that the threads working on the shared memory data are the
same as the threads working on the global memory data, so
no transpose happens here. Using this approach requires
less threads and less shared memory so that we can leave
more shared memory for other more important computa-
tions. For instance, in the example of Figure 8(c), only 4
threads are required to do the reduction and only the first
row of the shared memory is occupied. Also the advantage
of this approach is that the vector threads are warp threads,
so we do not need synchronization in the last 6 iterations
when only the last warp threads need to the reduction.

3.1.3 Reduction only in gang
The example of reduction only in gang is shown in Fig-

ure 4(a), where the inner worker and vector loops (j and
i) are executed in parallel while the gang loop (k loop) has
reduction. Since we map each gang to each thread block in
CUDA and there is no synchronization mechanism to syn-
chronize all thread blocks, the strategy of OpenUH is to
create a temporary buffer (partial in Figure 5 (c)) with the
size equal to the number of gangs, each block writes its par-
tial reduction into the specific entry of the buffer, then an-
other kernel (the same reduction kernel as the one in vector
addition) is launched to do the reduction within only one



threadIdx.x

th
re

a
d

Id
x
.y

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

(a) Data and threads layout in global memory

threadIdx.y

th
re

a
d

Id
x
.x

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

(b) One type data and threads layout in
shared memory

threadIdx.x

th
re

a
d

Id
x
.y

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

(c) Another type data and threads layout in
shared memory

Figure 8: Parallelization Comparison for Worker Reduction. In (a), Threads in each row is one worker, so four workers need
to do reduction. In (b), four worker values are in every row, so four rows have duplicate values and the final reduction is
stored in the first column. In (c), four worker values are only in the first row and following three row threads are inactive, the
final reduction is stored in the first element of the first row.

block. How to implement the partial reduction within each
gang may be different in different compilers. One approach
is to divide the iterations all gangs need to compute among
all gangs equally, then each gang works on the assigned it-
erations. OpenUH does not use such blocking algorithm,
instead OpenUH considers all gangs as a window, and this
window slides through the iteration space. This is similar to
the round-robin scheduling algorithm. Essentially there is
no difference between blocking algorithm and window slid-
ing techniques in gang partial reduction, but the window
sliding technique is superior than blocking algorithm in vec-
tor partial reduction since it can enable memory coalescing.
Memory coalescing is impossible in worker and gang partial
reduction, but we still use window sliding technique in both
cases in order to make the implementation consistent.

3.2 Reduction across Multi-level Thread Par-
allelism (RMP)

Section 3.1 focused on reduction occurring only in single
level parallelism. Although we discuss each of the cases indi-
vidually, there could be several combinations of these cases,
so some or all of these single cases could be grouped to-
gether. For instance, in a triple nested loop, the outermost,
the middle and the innermost loops use gang, worker and
vector reduction, respectively. Reduction can also occur on
different variables within different levels of parallelism. Mul-
tiple levels of parallelisms can happen within different loops
or within the same loop. Next we will discuss all these pos-
sibilities in detail.

3.2.1 RMP in Different Loops
Figure 9 shows an example of the same reduction span-

ning across different levels of parallelism in different loops.
In this example, the j sum needs to perform reduction on
both the worker and vector loops. The CAPS compiler adds
the reduction clause to both the worker and vector loops,
failing which incorrect result is generated. This is also a
favorable step since reduction occurs in both worker and
vector level parallelisms. The OpenUH compiler, however,
is smarter since it can automatically detect the position of
the reduction variable and the user just needs to add the

#pragma acc parallel copyin(input) \
copyout(temp)

{
#pragma acc loop gang
for(k=0; k<NK; k++)
{

int j_sum = k;
#pragma acc loop worker reduction (+: j_sum)
for(j=0; j<NJ; j++)
{

#pragma acc loop vector
for(i=0; i<NI; i++)

j_sum += input[k][j]i];
}
temp[k] = j_sum;

}
}

Figure 9: Example of RMP in Different Loops

reduction clause to the loop that is the closest to the next
use of that reduction variable. In this case, j sum is assigned
to temp[k] after the worker loop, so we add the reduction in
the worker loop. If j sum is used after the vector loop and
inside the worker loop, then we add the reduction clause in
vector loop. CAPS compiler at times, also just needs to add
the reduction clause to the outer most loop, but only when
all the inner loops are sequential. With respect to the im-
plementation, OpenUH compiler creates a buffer with the
size equal to the number of all threads that needs to do the
reduction (workers * vector threads in this example) and the
buffer is stored in the shared memory. Each thread writes
its own partial reduction result into this buffer and con-
tinues the reduction operation in the shared memory. The
multi-levels of parallelisms can be of three scenarios: gang &
worker, gang & worker & vector, and worker & vector. For
the former two cases, a temporary buffer is created and all
threads performing reduction operation write their own pri-
vate reduction into this buffer based on the unique id of each
thread. The buffer is allocated in the global memory since
the reduction spans across gangs and all gangs do not have
the mechanism to synchronize. Another kernel that takes
this temporary buffer as input is launched and this kernel
performs the vector reduction to generate the final reduction



value. Note that the reduction cannot span across gang &
vector without going through the worker.

An alternative approach is to perform the reduction in
multi-level parallelism following the order of the parallelisms
the reduction appear in. In the example of Figure 9, each
vector thread performs partial reduction and populates its
own private variable, then all vector threads perform the
vector reduction with their private reduction values. As a
next step, each worker does the partial reduction and popu-
late its own private variable, then all workers do the worker
reduction with their private reduction values. Each worker’s
private reduction value is the reduction value of all vector
threads within that worker. The final worker reduction value
is the private value for each gang. Since each gang has mul-
tiple workers, the final reduction value would be different
for each gang. Using this approach, the private variables
are different in worker and vector, the vector and worker
reduction algorithms could reuse the algorithms discussed
in Section 3.1. This implementation converts the same re-
duction in different loop levels into different reductions in
different loop levels so that the algorithms in Section 3.1
can be reused. OpenUH does not use this implementation
since this approach needs to perform reduction in multiple
times and therefore more synchronizations are required.

3.2.2 RMP in the Same Loop

sum = 0;
#pragma acc parallel copyin(input)
{

#pragma acc loop gang worker vector \
reduction (+:sum)

for(i=0; i<NI; i++)
sum += input[i];

}

Figure 10: Example of RMP in the Same Loop

Figure 10 shows an example of reduction across multi-
level parallelism in the same loop. In the implementation,
OpenUH creates a buffer with the size equal to the size of
the all threads that need to reduction (gangs * workers *
vector threads in this example), then each thread does its
own partial reduction, and finally launch another kernel to
do the reduction for all values in the buffer. Again whether
the buffer is stored in global memory or shared memory de-
pends on whether the reduction happens in gang parallelism.
As long as gang parallelism is involved, the buffer must be
in global memory.

3.3 Special Reduction Considerations
Apart from the cases listed in Section 3.1 and Section 3.2,

there are some other special reduction cases. One of them is
that the same reduction clause includes multiple reduction
variables and these variables have different data types (e.g.
int and float). In this case, one way is to create a large shared
memory space and different sections of the shared memory
are reserved for different reduction data types. This imple-
mentation may face the shared memory size issue since too
many reduction variables may required more shared mem-
ory than the hardware limit. OpenUH compiler, however,
creates a shared memory space with the size the same as the
largest required shared memory for a particular data type.
For instance, if there are “int” type reduction and the “dou-
ble” type reduction in the same reduction clause, then we

just need to create a shared memory for the double type
reduction because the required int type reduction memory
space is smaller than the required shared memory for double
type reduction and these two reduction can share the same
shared memory space.

We implemented the different cases of reduction operation
in both global and shared memory. Although the implemen-
tation in global memory is similar to that of the shared mem-
ory’s, the main difference is the memory access latency. We
created an implementation in the global memory primarily
because the shared memory is sometimes reserved for other
computation, therefore there is not enough memory space
for performing reduction operations. Take the blocked ma-
trix multiplication for example, the matrix is divided into
multiple blocks and the computation for each block occurs
inside the shared memory. Therefore if a reduction has to
happen at the same time, then we would need to move the
reduction operation to the global memory.

Another issue is the size of the iteration space and the
size of threads. The algorithm in [10] requires that both
the iteration space and thread size be power of 2. We re-
move such a restriction in OpenUH. The restriction of the
iteration space size is removed in the algorithm as shown
in Figure 3, because the threads window slides through the
iteration space. Although when the iteration space is not
power of 2, there will be some memory divergence within
the iterations in the last window. Therefore, the iteration
space size in the interleaved log-step reduction algorithm is
decided by the thread size rather than the original iteration
space size itself. Because the log-step reduction algorithm
inherently requires that the iteration space must be power
of 2, we need some additional steps before we could consider
the algorithm, when the threads size is not power of 2. For
instance, if the threads size is 96, first we need to get the
previous power-of-2 number 64, then the first 32 threads will
do the reduction on the first 32 elements and the last 32 el-
ements. Then the first 32 threads will work on the first 32
elements and the middle 32 elements which is 64 elements
which has already satisfied the requirement of the log-step
reduction algorithm. The recommended vector threads size
is multiple of warp size (32). Although the vector threads
size also could not be multiple of 32, the correctness will not
be affected but the performance will degrade significantly.

4. EVALUATION
The experimental platform has 24 Intel Xeon x86 64 cores

with 32GB main memory, and an NVIDIA Kepler GPU
card (K20c) with 5GB global memory. We use OpenUH
compiler to evaluate our OpenACC reduction implementa-
tion. For a comparative analysis, we also uses commercial
OpenACC compilers CAPS 3.4.0 and PGI 13.10 compil-
ers. CUDA 5.5 is used for all the three compilers. GCC
4.4.7 is used as the host compiler for CAPS compiler. To
easily compare the CPU result and GPU result, we dis-
able Fused Multiply Add (FMA) [16]. We use “-O3, -acc
-ta=nvidia,cc35,nofma” for the PGI compiler and “–nvcc-
options -Xptxas=-v,-arch,sm 35,-fmad=false gcc -O3”for the
CAPS compiler. OpenUH compiler uses “-fopenacc” flag to
compile the given OpenACC program. And since OpenUH
uses a source-to-source technique, CUDA nvcc compiler is
used to compile the generated kernel files and the flag passed
to nvcc compiler is “-arch=sm 35 -fmad=false”. The num-
ber of vector size is set to 128 since Kepler architecture has



quad warp scheduler that allows to issue and execute four
warps (32 threads) simultaneously. Threads within a thread
block is limited to 1024 threads due to which the number of
workers is set to 8. All thread blocks are scheduled on all
streaming multiprocessors (SMs). Kepler has 13 SMs and
one of them is likely to be disabled [8], also each SM can
support at most 16 thread blocks. To keep all SMs busy we
choose the number of gangs to be 12x16=192. We can set
the gang, worker and vector using num_gangs, num_workers
and vector_length clauses in OpenACC.

Since there are no existing benchmarks that could cover
all the reduction cases, we have designed and implemented
a testsuite to validate all possible cases of reduction includ-
ing different reduction data types and reduction operations.
The testsuite will check if a given reduction implementation
passed or failed by verifying the OpenACC result with the
CPU result. If the values do not match, it implies there is an
implementation issue. We also measure the execution time
of each of the reduction cases, so if the compilers under eval-
uation can pass the test, we compare their performances too.
For all the test cases, we perform reduction using OpenACC
first and then on the CPU side, after which we compare if
their results are the same. When reduction occurs in one
of the levels of parallelism, the other levels of parallelisms
has instructions being executed in parallel. Only the RMP
in the same loop uses one loop, the other reduction tests
use triple nested loop. When one loop level needs to do re-
duction, that loop iteration size is up to 1M and the other
two loops are 2 and 32 because of the memory limit of the
hardware. Although we used triple nested loop in experi-
ments, the user can use collapse clause in OpenACC if the
loop level is more than three. We discuss the results of the
most commonly used reduction operators “+” and “*”; the
implementation of other reduction operators are almost the
same. We also use a real world application to demonstrate
“max” reduction intrinsic.

Table 2 discusses the performance results of OpenUH, PGI
and CAPS compilers while using the reduction testsuite. We
see that only OpenUH compiler passed all of the reduction
tests. CAPS compiler failed some of the tests of RMP in
different loops. PGI compiler failed the summation reduc-
tion in worker, vector and RMP in gang & worker. It even
failed to compile the RMP in gang & worker & vector. Fig-
ure 11 shows the performance comparison of the three com-
pilers. It is observed that in gang or vector reduction, the
performance of OpenUH compiler is more or less the same
as the CAPS compiler, and only in worker reduction it is
slightly less efficient than CAPS compiler. The performance
of OpenUH is better than PGI compiler for all reduction
cases. We could not dive deeper into the analysis for the ob-
vious reason that CAPS and PGI are commercial compilers
and we do not have access to their underlying implemen-
tation details. Although the execution time here is only
several hundred milliseconds, it can still have an impact on
a real-world application. We discuss this later.

Although the testsuite only includes the reduction cases
in triple nested loop and one loop, they can be used in any
levels of the loop. Apart from the testsuite, we also used
some real-world benchmark applications: 2D Heat Equation,
matrix multiplication and Monte Carlo PI. Let us look into
the evaluation details.

2D Heat Equation is a type of stencil computation.
The formula to represent the 2D heat equation is explained

in [14]. In this application, there is a grid that has bound-
ary points and inner points. Boundary points have an initial
temperature and the temperature of the inner points need
to be updated over iterations. Each inner point updates its
neighboring points and itself. The temperature updating
operation for all inner points needs to last long enough to
obtain the final stable temperature. We added the temper-
ature converge code in [14] so that we can know when the
convergence happens. The temperature is stable when the
maximum temperature difference for all data points in the
grid between two consecutive iterations gradually decreases
from a large value until 0. So in every iteration, the pro-
gram needs to compute the maximum difference for all data
points in the current iteration and all data points in the
previous iteration, which is a max reduction in OpenACC.
The code snippet is shown in Figure 13 (a), where temp1 is
the temperature in the previous iteration and temp2 is the
temperature in the current iteration. All data points in the
grid are traversed to get the maximum error. We have prior
experience working on the parallelization of the tempera-
ture updating kernel [17], but in this paper we only focus
on the maximum reduction. Figure 12 (a) shows the perfor-
mance comparison between OpenUH and other two compil-
ers. The performance of the CAPS compiler is missing since
the temperature difference generated by this compiler in-
creases gradually rather than a decrease, so the application
can never converge. We increase the grid size from 128x128
to 512x512 and we find that OpenUH compiler is always
better than PGI compiler. This demonstrates that the per-
formance of the reduction implementation will accumulate
in an iterative algorithm; we do not observe the signicant
performance improvement in only one iteration.

Matrix Multiplication is a classic example in parallel
programming. We consider a naive matrix multiplication
case. Most developers usually only parallelize the outer two
loops and lets the third loop execute sequentially since the
third loop has data dependence. However we can also par-
allelize the third loop because essentially it just includes the
“sum” reduction operations. The code snippet is shown in
Figure 13 (b) and the performance comparison in shown in
Figure 12 (b). Different matrix sizes are chosen and the re-
sult shows that the performance of OpenUH is more than
2x better than CAPS compiler. Since the reduction here
happens only in vector and PGI compiler failed the vector
reduction as indicated in Figure 11 (c), the PGI performance
bar is not shown.

Monte Carlo PI is another example of using reduction.
PI (π) can be computed in different ways and one of them
is to use the Monte Carlo statistical method. Given a circle
of the radis 1 is inscribed inside a square with side length
2, then the area of the circle and the square are π and 4,
respectively. Therefore the ratio of the area of the circle
to the area of the square (ρ) is π/4. The program picks
points within the square randomly and check whether the
point is also inside the circle. This can be determined by
the formula x2 + y2 < 1, where x and y are the coordinates
of the point. Assume the number of data points within the
circle is m and the number of data points within the square
is n, then ρ = m/n and we can obtain π = 4.0 ∗ m/n.
The more data points sampled within the square, the more
accurate the value of π can be obtained. In the program,
n is the total number of iterations of a loop and inside the
loop the coordinates of a data point x and y are randomly
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Figure 11: Performance Comparison of OpenACC Compilers using Reduction Testsuite. Missing bars imply that the test
failed. The symbol in square brackets indicates the reduction operator. gw: gang worker; wv: worker vector; gwv: gang
worker vector; sgwv: same line gang worker vector
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Figure 12: Performance Comparison for three Applications. CAPS bar in (a) and PGI bar in (b) are missing because they
failed. The symbol in square brackets is the reduction operator.

#pragma acc loop gang
reduction(max:error)
for (j=1; j < nj -1; j++) {

#pragma acc loop vector
for (i=1; i < ni -1; i++) {

i00 = j*ni + i;
error = fmax(error ,

fabs(temp1[i00] - temp2[i00]));
}

}

(a) 2D Heat Equation

#pragma acc loop gang
for (i = 0; i < n; i++){

#pragma acc loop worker
for (j = 0; j < n; j++){

c = 0.0;
#pragma acc loop vector

reduction (+:c)
for (k = 0; k < n; k++)

c+=A[i*n+k]*B[k*n +j];
C[i*n+j] = c;

}
}

(b) Matrix Multiplication

#pragma acc loop gang vector
reduction (+:m)

for(i=0; i<n; i++)
{
//x [ i ]=2.0∗ rand () /(RANDMAX+1.0)−1.0;
//y [ i ]=2.0∗ rand () /(RANDMAX+1.0)−1.0;

if(x[i]*x[i] + y[i]*y[i] < 1.0)
m++;

}

(c) Monte Carlo PI

Figure 13: Code Snippet for Three Applications



Table 2: Performance Results of OpenACC Compilers using reduction testsuite. Time is in milliseconds. “F” stands for test
FAILED, and “CE” stands for compile time error. Except the “same line gang worker vector” uses only one loop, the other
reduction tests used triple nested loop where the outermost, middle and the innermost loops are gang, worker and vector
respectively. The first column implies the reduction position. For instance, “gang worker” means gang and worker loops need
to do reduction while the vector loop executes in parallel.

Reduction
Position

Reduction
Operator

Data Type

Int Float Double
OpenUH PGI CAPS OpenUH PGI CAPS OpenUH PGI CAPS

gang + 151.27 424.64 151.29 142.99 411.76 143.78 244.61 507.02 249.13
* 156.01 430.77 153.92 249.27 415.91 144.12 254.90 483.59 266.09

worker + 399.25 F 290.83 401.33 F 322.97 610.61 F 543.20
* 413.35 734.35 292.86 414.50 708.29 309.25 664.87 973.88 541.80

vector + 268.47 F 272.32 274.06 F 278.74 532.01 F 520.14
* 269.80 544.71 269.98 284.68 555.58 279.58 529.37 800.89 522.11

gang worker + 107.49 F F 115.10 F F 212.31 F F
* 113.36 356.00 102.50 104.44 357.50 108.53 223.30 463.34 217.15

worker vector + 50.58 298.33 F 54.85 304.82 F 107.75 347.90 F
* 51.20 209.72 56.82 52.75 314.60 52.46 105.97 349.44 95.78

gang worker vector + 8.77 CE F 7.66 CE F 7.65 CE F
* 8.15 232.84 5.50 5.61 CE 3.09 4.87 CE 3.82

same line
gang worker vector

+ 7.55 251.67 4.60 7.57 251.98 4.94 11.24 255.12 7.26

* 7.25 243.63 5.21 7.86 256.18 5.361 11.90 262.49 6.90

generated by calling rand() in C, and then check whether
x2 + y2 < 1. If yes, then m is increased by 1. Therefore the
computation of m is actually a reduction operation. Since at
the time of writing most compilers do not support function
call inside an OpenACC kernel region , we pre-generate the
x and y values on the host and then transfer them to the
device to for m reducion. The code is in Figure 13 (c) where
the loop is one level and the computation is distributed to
gang and vector threads. For more accurate PI value, we
try to sample as many points as we can. In our Kepler
architecture, the maximum global memory is 5GB, so we
use different sampled data size 1GB, 2GB and 4GB memory
for this application. The results comparison among different
compilers is shown in Figure 12 (c). It is observed that
the performance of OpenUH is slightly better than CAPS
compiler and much better than PGI compiler. This result is
consistent with the performance difference while using the
reduction testsuite, although we just used gang and vector
in one loop instead of using gang, worker and vector in the
testsuite.

5. RELATED WORK
Reduction is a well known topic, in this section, we will

discuss some of the existing implementations of reduction
operation in different programming models. Performing re-
duction is a challenge, different models may adopt different
implementation strategies.

Reduction in OpenMP: In OpenMP programming model,
the threads are one dimensional, hence there are not many
use cases for reduction. Liao et al. [12] implemented the
OpenMP reduction in two steps in the OpenUH compiler.
In the first step, a reduction variable is substituted with
a local copy in each thread to participate in the reduction
operation computation. In the second step, values of local
copies are summarized into the original reduction variable

protected by a critical section. Usually the critical section
is implemented via POSIX threads [7] mutex lock and un-
lock functions before and after a critical section. Mutex
is one of the expensive locks in terms of performance. So
Nanjegowda et al. [13] tried to eliminate the use of locks
by using tree barrier and tournament barrier algorithms to
improve the performance, but at the cost of additional data
and temporary variables. Reduction in GCC compiler [6]
is implemented by creating an array of the type of the re-
duction variable so that it can be indexed by the thread id,
then each thread stores its reduction value into the array,
finally the master thread iterates over the array to collect
all private reduction values and generate the final reduction
value. These approaches cannot be applied to OpenACC
since threads in OpenMP are one dimensional but threads
in OpenACC are three dimensional and OpenACC has no
lock mechanism and cannot identify threads by any thread
id.

Reduction in CUDA and OpenCL: Harris et al. [10]
discussed seven different reduction algorithms in CUDA.
Their optimizations include global memory coalescing to re-
duce memory divergence, shared memory optimization avoid-
ing shared memory bank conflict, partial and full loop un-
rolling and algorithm cascading. They analyzed the cost of
each algorithm and compared the performance of all reduc-
tion algorithms and achieved bandwidth close to the theoret-
ical bandwidth. We have leveraged some of these algorithms
in our work. OpenCL uses different reduction strategies.
Catanzaro [3] took advantage of the associativity and com-
mutativity properties of reduction operation to restructure
a sequential loop into reduction trees and then used several
strategies for building efficient reduction trees. They ob-
served that most of their parallel reduction trees are very
inefficient because of a number of communication and syn-
chronization required among threads. Better performance
can be achieved if much of the reduction is done serially.



Reduction in OpenACC: Komoda et al. [11] proposed
a new directive in OpenACC to solve the array reduction
problem and to overcome the limitation of supporting only
scalar reduction in current OpenACC specification. The ar-
ray reduction means that every element of an array needs
to do reduction. Their array reduction implementation can
work on both single GPU and multi-GPU platform. How-
ever, they do not mention the complexity of scalar reduction
in OpenACC and all the possible reduction usages. Our
work in this paper focuses on the scalar reduction in Ope-
nACC standard.

6. CONCLUSION
In this paper, we present all possible reduction cases in

OpenACC programming model, and the underlying par-
allelization implementations in an open-source OpenACC
compiler OpenUH. We evaluat our implementation with a
self-written reduction test suite and also use three real-world
applications. We observed competitive performance while
comparing OpenUH with the other two commercial Ope-
nACC compilers. Unlike one of the commercial compilers
that needed to add the reduction clause in multiple-level
parallelism, OpenUH could detect the position where the
reduction has to occur intelligently and the user is only re-
quired to add the reduction clause once. A similar reduc-
tion methodology can also be applied to other programming
models such as OpenMP 4.0. OpenMP demonstrates two
levels of parallelism and it just needs to ignore the worker if
our implementation strategy is used.
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