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Existing studies show that using single GPU can lead to obtaining significant performance gains. We should be able to achieve
further performance speedup if we use more than one GPU. Heterogeneous processors consisting of multiple CPUs and GPUs
offer immense potential and are often considered as a leading candidate for porting complex scientific applications. Unfortunately
programming heterogeneous systems requires more effort than what is required for traditional multicore systems. Directive-based
programming approaches are being widely adopted since they make it easy to use/port/maintain application code. OpenMP and
OpenACC are two popular models used to port applications to accelerators. However, neither of the models provides support for
multiple GPUs. A plausible solution is to use combination of OpenMP and OpenACC that forms a hybrid model; however, building
this model has its own limitations due to lack of necessary compilers’ support. Moreover, the model also lacks support for direct
device-to-device communication. To overcome these limitations, an alternate strategy is to extend OpenACC by proposing and
developing extensions that follow a task-based implementation for supporting multiple GPUs. We critically analyze the applicability

of the hybrid model approach and evaluate the proposed strategy using several case studies and demonstrate their effectiveness.

1. Introduction

Heterogeneous architecture has gained great popularity over
the past several years. These heterogeneous architectures
are usually comprised of accelerators that are attached to
the host CPUs, and such accelerators could include GPUs,
DSPs, and FPGA. Although heterogeneous architectures
help in increasing the computational power significantly,
they also pose potential challenges to programmers before
the capabilities of these new architectures could be well
exploited. CUDA [1] and OpenCL [2] offer two different
interfaces to program GPUs. But in order to perform effective
programming using these interfaces, the programmers need
to thoroughly understand the underlying architecture and the
language/model. This affects productivity. To overcome these
difficulties, a number of high-level directive-based program-
ming models have been proposed that include HMPP [3],
PGI [4], and OpenACC [5]. These models simply allow the
programmers to insert directives and runtime calls into an
application code, making partial or full Fortran and C/C++
code portable on accelerators. OpenACC is an emerging

interface for parallel programmers to easily create and write
simple code that executes on accelerators. In August 2013,
the OpenACC standard committee released a second version
of the API, OpenACC 2.0. Vendor companies, Cray and
PGI, provide compiler support for OpenACC 2.0. CAPS,
before they ran out of business, was also providing support
for OpenACC 2.0. The model is aiming to port scientific
applications to more than one GPU. Several large applications
in the fields of geophysics, weather forecast require massive
parallel computations and such applications could easily
benefit from multiple GPUs. How can we create suitable
software that could take advantage of multiple GPUs without
losing performance portability? This remains a challenge.
In a large cluster, multiple GPUs could reside within a
single node or across multiple nodes. If multiple GPUs are
used across nodes and each node has one GPU, then the
CPU memory associated with the corresponding GPU is
independent of the CPU memory associated with another
GPU. This makes the communication between the GPUs
easier since the CPU memories associated with those GPUs
are distributed. However, multiple GPUs could also be in
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a single node. Since each node in a cluster is usually a shared
memory system which has multiple processors, the same
shared memory is associated with multiple GPUs. This makes
the communication between these GPUs more difficult since
they share the same CPU memory and thus the possible
memory synchronization issue arises. This paper only focuses
on multi-GPU within a single node.

In this paper, we develop strategies to exploit usage of
multiple GPUs.

(i) Explore the feasibility of programming multi-GPU
using the directive-based programming approaches.

(ii) Evaluate performance obtained by using the OpenMP
and OpenACC hybrid model on a multi-GPU plat-

form.

(iii) Propose extensions to OpenACC to support pro-
gramming multiple accelerators within a single node.

We categorize our experimental analysis into three types: (a)
port completely independent routines or kernels to multi-
GPU, (b) divide one large workload into several independent
subworkloads and then distribute each subworkload to one
GPU. In these two cases, there is no communication between
the GPUs, and (c) use workload in manner that requires
different GPUs to communicate with each other.

The organization of this paper is as follows. Section 2
highlights related work in this area; Section 3 provides an
overview of OpenMP and OpenACC directive-based pro-
gramming models. In Section 4, we will discuss our strategies
to develop the hybrid model using OpenMP and OpenACC-
based hybrid model and port three scientific applications to
multi-GPU within single node with NVIDIAs GPU cards
attached. In Section 5 we propose newer extensions to the
OpenACC programming model addressing limitations of the
hybrid model. Section 6 provides the conclusion of our work.

2. Related Work

Existing research on directive-based programming approach
for accelerators focuses on mapping applications to only
single GPU. Liao et al. [6] provided accelerator support
using OpenMP 4.0 in ROSE compiler. Tian et al. [7] and
Reyes et al. [8] developed open source OpenACC compilers,
OpenUH, and accULL, respectively. Both their approaches
use source-to-source technique to translate OpenACC pro-
gram to either CUDA program or OpenCL program. Besides
compiler development, there is also extensive research [9-11]
on the porting applications using OpenACC. These works,
however, all utilize only a single GPU, primarily because
both OpenACC and OpenMP do not yet provide support for
multiple accelerators.

A single programming model may be insufficient to
provide support for multiple accelerator devices; however,
the user can apply hybrid model to achieve this goal. Hart
et al. [12] used Coarray Fortran (CAF) and OpenACC and
Levesque et al. [13] used MPI and OpenACC to program mul-
tiple GPUs in a GPU cluster. The inter-GPU communication
in these works is managed by the Distributed Shared Memory
(DSM) model CAF or distributed memory model MPIL
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Unlike these works, our work uses OpenMP and OpenACC
hybrid model. We also develop an approach that extends
the OpenACC model to support multiple devices in a single
cluster node.

Other works that target multiple devices include OmpSs
[14] that allows the user to use their own unique directives in
an application so that the program can run on multiple GPUs
on either the shared memory system or distributed memory
system. StarPU [15] is a runtime library that schedules tasks
to multiple accelerators. However, the drawbacks of these
approaches are that both OmpSs and StarPU require the
user to manually write the kernel that is to be offloaded to
the accelerators. Moreover, their approach is not part of any
standard thus limiting the usability.

To the best of our knowledge, the only other program-
ming model that supports multiple accelerators without the
need to manually write accelerator kernel files is HMPP
[3], a directive-based approach. However, HMPP directives
are quite challenging in terms of their usability and porting
applications to accelerators and even complicated when the
applications are large and complex enough.

In this paper, we have adopted a task-based concept by
proposing extensions to the OpenACC model to support
multiple accelerators. This work is based upon our previous
work in [16]. The new work compared to our previous work
is the model extension part. Related work that uses tasking
concept for GPUs includes Chatterjee et al. [17] who designed
aruntime system that can schedule tasks into different Stream
Multiprocessors (SMs) in one device. In their system, at a
specific time, the device can only execute the same number
of thread blocks as the number of SMs (13 in Kepler 20c¢),
thus limiting the performance. This is because their system
is designed for tackling load balancing issues among all
SMs primarily for irregular applications. Extensions to the
OpenACC model were proposed by Komoda et al. [18] to
support multiple GPUs. They proposed directives for the
user to specify memory access pattern for each data in a
computing region and the compiler identifies the workload
partition. Typically, it is quite complicated if it is the user that
identifies the memory access pattern for all data, especially
when a data is multidimensional or accesses multiple index
variables. In our extensions to the Open ACC model we allow
the user to partition the workload, thus further simplifying
the application porting, and make the multi-GPU support
general enough to cover most application cases.

3. Overview of OpenACC and OpenMP

OpenMP is a high-level directive-based programming model
for shared memory multicore platforms. The model consists
of a set of directives, runtime library routines, and environ-
ment variables. The user just needs to simply insert the direc-
tives into the existing sequential code, with minor changes or
no changes to the code. OpenMP adopts the fork-join model.
The model begins with an initial main thread, then a team of
threads will be forked when the program encounters a parallel
construct, and all other threads will join the main thread at
the end of the parallel construct. In the parallel region, each
thread has its own private variable and does the work on
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its own piece of data. The communication between different
threads is performed by shared variables. In the case of a
data race condition, different threads will update the shared
variable atomically. Starting from 3.0, OpenMP introduced
task concept [19] that can effectively express and solve the
irregular parallelism problems such as unbounded loops
and recursive algorithms. To make the task implementation
efficient, the runtime needs to consider the task creation,
task scheduling, task switching, task synchronization, and
so forth. OpenMP 4.0 released in 2013 includes support for
accelerators [20].

OpenACC [5], similar to OpenMBD, is a high-level pro-
gramming model that is being extensively used to port
applications to accelerators. OpenACC also provides a set
of directives, runtime routines, and environment variables.
OpenACC supports three-level parallelism: coarse grain
parallelism “gang,” fine grain parallelism “worker,” and vector
parallelism “vector” While mapping the OpenACC three
levels of parallelism to the low level CUDA programming
model, all of PGI, CAPS [21], and OpenUH [22] map each
gang to a thread block, workers to the Y-dimension of a
thread block and vector to the X-dimension of a thread block.
This guarantees fair performance comparison when using
these compilers since they use the same parallelism mapping
strategy. The execution model assumes that the main program
runs on the host, while the compute-intensive regions of the
main program are oftloaded to the attached accelerator. In
the memory model, usually the accelerator and the host CPU
consist of separate memory address spaces; as a result, data
being transferred back and forth is an important challenge
to address. To satisfy different data optimization purposes,
OpenACC provides different types of data transfer clauses
in 1.0 specification and possible runtime routines in the 2.0
document. To fully utilize the CPU resource and remove
potential data transfer bottleneck, OpenACC also allows
asynchronous data transfer and asynchronous computation
with the CPU code. Also the model offers an update directive
that can be used within a data region to synchronize data
between the host and the device memory.

4. Multi-GPU Support with OpenMP and
OpenACC Hybrid Model

In this section, we will discuss strategies to explore pro-
gramming multi-GPU using OpenMP and OpenACC hybrid
model within a single node. We will evaluate our strategies
using three scientific applications. We study the impact of
our approach by comparing and analyzing the performances
achieved by the hybrid model (multi-GPU implementation)
against that of a single GPU implementation.

The experimental platform is a server machine that is a
multicore system consisting of two NVIDIA Kepler 20Xm
GPUs. The system itself has Intel Xeon x86_64 CPU with
24 cores (12 x 2 sockets), 2.5GHz frequency, and 62 GB
main memory. Each GPU has 5 GB global memory. We use
CAPS OpenACC for S3D and PGI OpenACC for matrix
multiplication and 2D heat equation. PGI compiler is not
used for S3D since it cannot compile the code successfully.

The 2D heat equation program compiled by CAPS compiler
is extremely long so we do not show the result here. CAPS
compiler does compile the matrix multiplication program
but we leave the performance comparison with other
compilers later and here we only verify the feasibility of
hybrid programming model. We use GCC 4.4.7 as CAPS
host compiler for all C programs. For a Fortran program, we
use PGI and CAPS (pgfortran as the host compiler of CAPS)
to compile the OpenACC code. We use the latest versions of
CAPS and PGI compilers, 3.4.1 and 14.2, respectively. CUDA
5.51is used for our experiments. The CAPS compiler performs
source-to-source translation of directives inserted code into
CUDA code and then calls nvce to compile the generated
CUDA code. The flags passed to CAPS compiler are “~nvcc-
options -Xptxas=-v;,-arch,sm_35,-fmad=false,” and the flags
passed to PGI compiler are “-O3 -mp -ta=nvidia,cc35,nofma.”
We consider wall-clock time as the evaluation measurement.
We ran all experiments for five times and then averaged the
performance results. In the forthcoming subsections, we
will discuss both single and multi-GPU implementations
for the S3D thermodynamics application kernel, matrix
multiplication, and 2D heat equation.

OpenMP is fairly easy to use, since all that the pro-
grammer needs to do is to insert OpenMP directives in the
appropriate places and, if necessary, make minor modifi-
cations to the code. The general idea of an OpenMP and
OpenACC hybrid model, as shown in Figure 1, is that we need
to manually divide the problem among OpenMP threads
and then associate each thread with a particular GPU. The
easy case is when the work in each GPU is independent of
each other and no communication among different GPUs
is involved. But there may be cases where the GPUs will
have to communicate with each other and this will involve
the CPUs too. Different GPUs transfer their data to their
corresponding host threads, these threads then communicate
or exchange their data via shared variable, and finally the
threads transfer the new data back to their associated GPUs.
With the GPU direct technique [23], it is also possible to
transfer data between different GPUs directly without going
through the host. This has not been plausible in OpenMP
and OpenACC hybrid model so far, but in Section 5 we will
propose some extensions to the OpenACC programming
model to accommodate this feature.

4.1. 3D Thermodynamics Kernel. S3D [24] is a flow solver
that performs direct numerical simulation of turbulent com-
bustion. S3D solves fully compressible Navier-Stokes, total
energy, species, and mass conservation equations coupled
with detailed chemistry. Apart from the governing equations,
there are additional constitutive relations, such as the ideal
gas equation of state, models for chemical reaction rates,
molecular transport, and thermodynamic properties. These
relations and detailed chemical properties have been imple-
mented as kernels or libraries suitable for GPU computing.
Some research on S3D has been done in [13, 25], but the
code they used is not accessible for us. For the experimental
purpose of our work, we only chose two separate and
independent kernels of the large S3D application, discussed
in detail in [26].
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dom=1, MR

!$acc end data

!$acc data copyout(c(l:np), h(l:np)) copyin(T(l:np),...)

call calcmixcp(np, nslvs, T, midtemp, ..., c)
call calcmixenth(np, nslvs, T, midtemp, ..., h)
end do

ALGORITHM 1: S3D thermodynamics kernel in single GPU.
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FIGURE 1: A multi-GPU solution using the hybrid OpenMP and
OpenACC model. Each OpenMP thread is associated with one GPU.

We observed that the two kernels of S3D have similar code
structures and their input data are common. Algorithm1
shows a small code snippet of a single GPU implemen-
tation. Both the kernels, calc_mixcp and calc_mixenth, are
surrounded by a main loop with MR iterations. Each kernel
produces its own output result, but their results are the same
as that of the previous iteration. The two kernels can be
executed in the same accelerator sequentially while sharing
the common input data, which will stay on the GPU during
the whole execution time. Alternatively, they can be also
executed on different GPUs simultaneously since they are
totally independent kernels.

In order to use multi-GPU, we distribute the kernels to
two OpenMP threads and associate each thread with one
GPU. Since we have only two kernels, it is not necessary
to use omp for; instead we use omp sections so that each
kernel is located in one section. Each thread needs to set
the device number using the runtime acc_set_device_num
(int devicenum, acc_device_t devicetype). Note that the device
number starts from 1 in OpenACC, or the runtime behavior
would be implementation-defined if the devicenum were to
start from 0. To avoid setting the device number in each
iteration and make the two kernels work independently, we
apply loop fission and split the original loop into two loops.
Finally we replicate the common data on both the GPUs. The
code snippet in Algorithm 2 shows the implementation for
multi-GPU. Although it is a multi-GPU implementation, the
implementation in each kernel is still the same as that of a
single GPU implementation. Figure 2 shows the performance
results of using single GPU and two GPUs. It is observed
that two GPUs almost always take approximately half the
time taken for a single GPU. This illustrates the performance
advantage of using multiple GPUs over single GPU.
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FIGURE 2: Performance comparison of S3D.

4.2. Matrix Multiplication. With S3D, we had distributed
different kernels of one application to multiple GPUs. An
alternate type of a case study would be where the workload
of only one kernel is distributed to multiple GPUs, especially
if the workload is very large. We will use square matrix
multiplication as an illustration to explore this case study. We
chose this application since this kernel is extensively used in
numerous scientific applications. This kernel does not com-
prise complicated data movements and can be parallelized by
simply distributing work to different thread. We also noticed
a large computation to data movement ratio.

Typically matrix multiplication takes matrix A and matrix
B as input and produces matrix C as the output. When
multiple GPUs are used, we will use the same amount of
threads as the number of GPUs on the host. For instance, if
the system has 2 GPUs, then we will launch 2 host threads.
Then we partition matrix A in block row-wise which means
that each thread will obtain partial rows of matrix A. Every
thread needs to read the whole matrix B and produce the
corresponding partial result of matrix C. After partitioning
the matrix, we use OpenACC to execute the computation of
each partitioned segment on one GPU.

Algorithm 3 shows a code snippet for the multi-GPU
implementation for matrix multiplication. Here we assume
that the number of threads could be evenly divided by the
square matrix row size. Since the outer two loops are totally
independent, we distribute the i loop into all gangs and
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call omp_set_num threads(2)
!$omp parallel private(m)
!$omp sections
I$omp section
call acc_set_devicenum(1l, acc_device_not_host)
!$acc data copyout(c(1l:np)) copyin(T(1:np),...)
dom=1, MR

call calcmixcp(np, nslvs, T, ...
end do
1$acc end data
'$omp section
call acc_set_devicenum(2, acc_device_not_host)
!$acc data copyout(h(1l:np)) copyin(T(1l:np),...)
dom=1, MR

call calcmixenth(np, nslvs, T, ...
end do
1$acc end data
'$omp end sections
'$omp end parallel

, C)

)h)

ALGORITHM 2: S3D thermodynamics kernel in multi-GPU using hybrid model.

omp_set_num threads(threads) ;
#pragma omp parallel

int i, j, k;
int id, blocks, start, end;
id = omp_get_thread num() ;
blocks = n/threads;
start = idxblocks;
end = (id+1)#*blocks;
acc_set_device num(id+1, acc_device_not_host);
#pragma acc data copyin(A[start#n:blocks=*n])\
copyin (B[Om*n])\
copyout (C[start*n:blockss*n])
i
#pragma acc parallel num gangs(32) vector_length(32)
{
#pragma acc loop gang
for(i=start; i<end; i++){
#pragma acc loop vector
for(j=0; j<n; j++){
float ¢ = 0.0f;
for(k=0; k<n; k++)
c += A[isn+k] * Blkxn+j];
Cl[i*n+j] = c;

}

ALGORITHM 3: A multi-GPU implementation of MM using hybrid model.

the j loop into all vector threads of one gang. We have
used only 2 GPUs for this experiment; however, more than
2GPUs can be easily used as long as they are available in
the platform. In this implementation, we assume that the
number of GPUs can be evenly divided by the number of

threads. We use different workload size for our experiments.
The matrix dimension ranges from 1024 to 8192. Figure 3(a)
shows the performance comparison while using one and
two GPUs. For all data size except 1024, the execution time
with 2GPUs is almost half of that with only 1GPU. For
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FIGURE 3: Performance comparison using hybrid model.

1024 = 1024 as the matrix size, we barely see any benefit
using multiple GPUs. This is possibly due to the overhead
incurred due to the creation of host threads and GPU context
setup. Moreover, the computation is not large enough for
two GPUs. When the problem size is more than 1024, the
multi-GPU implementation shows a significant increase in
performance. In these cases, the computation is so intensive
that the aforementioned overheads are being ignored.

4.3. 2D Heat Equation. We notice that, in the previous two
cases, the kernel on one GPU is completely independent of
the kernel on the other GPU. Now we will explore a case
where there is communication between different GPUs. One
such interesting application is 2D heat equation. The formula
to represent 2D heat equation is explained in [27] and is given
as follows:

2 2
or (aT aT), W

— = _— t —
ot ox?  0y?
where T is temperature, ¢ is time, « is the thermal diffusivity,

and x and y are points in a grid. To solve this problem, one
possible finite difference approximation is

E —a Ti+1,j B 2Ti,j + Ti—l,j N Ti,j+1 - 2Ti,j + Ti,j—l
At - Ax? AyZ ’

)

where AT is the temperature change over time At and 4, j are
indexes in a grid. In this application, there is a grid that has
boundary points and inner points. Boundary points have an
initial temperature and the temperature of the inner points
is also updated. Each inner point updates its temperature
by using the previous temperature of its neighboring points
and itself. The operation that updates temperature for all

inner points in a grid needs to last long enough. This implies
that many iterations are needed before arriving at the final
stable temperatures. In our program, the number of iterations
is 20,000, and we increase the grid size gradually from
512 % 512 to 4096 * 4096. Our prior experience working on
single GPU implementation of 2D heat equation is discussed
n [11]. Algorithm 4 shows the code snippet for the single
GPU implementation. Inside the kernel that updates the
temperature, we distribute the outer loop into all gangs and
the inner loop into all vector threads inside each gang. Since
the final output will be stored in temp] after pointer swapping,
we just need to transfer this data out to host.

Let us discuss the case where the application uses two
GPUs. Algorithm 5 shows the program in detail. In this
implementation, #ni and nj are X and Y dimensions of the
grid (it does not include boundary), respectively. As shown
in Figure 4, we partitioned the grid into two parts along
Y dimension and run each part on one GPU. Before the
computation, the initial temperature is stored in templ_h,
and after updating the temperature, the new temperature is
stored in temp2_h. Then we swap the pointer so that in the
next iteration the input of the kernel points to the current
new temperature. Since updating each data point needs its
neighboring points from the previous iteration, two GPUs
need to exchange the halo data in every iteration. The halo
data refers to the data that needs to be exchanged by different
GPUs. So far by simply using high-level directives or runtime
libraries, data cannot be exchanged directly between different
GPUs and the only workaround is to first transfer the data
from one device to the host and then from the host to
another device. In 2D heat equation, different devices need
to exchange the halo data; therefore, the halo data updating
would go through the CPU. Because different GPUs use
different parts of the data in the grid, we do not have to
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void step_kernel...}
{
#pragma acc parallel present(temp_in[Omni*nj], temp_out[Omnixnj]) \
num_gangs (32) vector_length(32)
{
// loop over all points in domain (except boundary)
#pragma acc loop gang
for (j=1; j < nj-1; j++) {
#pragma acc loop vector
for (i=1; i < ni-1; i++) {
// find indices into linear memory
// for central point and neighbours
i00 = I2D(ni, i, j);
im10 = I20(ni, i-1, j);
ip10 = I2D(ni, i+1, j);
i0ml = I2D(ni, i, j-1);
iOpl = I2D(ni, i, j+1);
// evaluate derivatives
d2tdx2 = temp_in[im10]-2%temp_in[i00]+temp_in[ip10];
d2tdy2 = temp_in[iOml]-2%temp_in[i00]+temp_in[iOpl];
// update temperatures
temp_out[i00] = temp_in[i00]+tfac*(d2tdx2 + d2tdy2);
}

}
}
}
#pragma acc data copy(templ[O:nix*nj]) \
copyin(temp2[0:ni*nj])
{
for (istep=0; istep < nstep; istep++) {
step_kernel(ni, nj, tfac, templ, temp2);
// swap the temp pointers
temp = templ;
templ = temp2;
temp2 = temp;

ALGORITHM 4: Single GPU implementation of 2D heat equation.

Device 0

Host J
Device 1
Device 2

FIGURE 4: Multi-GPU implementation strategy for 2D heat equation using the hybrid model. Consider that there are 3 GPUs (Devices 0, 1,
and 2). The grid in the left has 6 rows (excluding boundaries, i.e., the top and the bottom rows). By splitting the 6 rows into 3 parts, each GPU
is expected to compute only 2 rows. However, the computation for a data point requires the value of the neighboring points (top, bottom, left,
and right data points); hence, simply considering 2 rows of the grid for 1 GPU is not enough. For GPU Device 0, the last row added already
has the left, top, and right data points but lacks data points from the bottom; hence, the bottom row needs to be added, leading to 3 rows in
total. For GPU Device 1, the first and the second rows do not have data points from the top and the bottom, respectively, hence requiring an
addition of the top and bottom rows. This leads to 4 rows in total. For GPU Device 2, the first row does not have data points from the top and
requires the addition of the top row. This leads to 3 rows in total. Another point to note is that values in the rows added need to be updated
from other GPUs as indicated by the arrows.
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omp_set_num_threads (NUM_THREADS) ;
rows = nj/NUM_THREADS;
LDA = ni + 2;
// main iteration loop
#pragma omp parallel private(istep)
{
float *templ, *temp2, *temp_tmp;
int tid = omp_get_thread num();

templ = templh + tidxrows*LDA;
temp2 = temp2.h + tidxrowsxLDA;

{

acc_set_device num(tid+1, acc_device not_host);

#pragma acc data copyin(temp1[0:(rows+2)*LDA]) \
copyin(temp2[0: (rows+2) *LDA])

for(istep=0; istep < nstep; istep++){
step_kernel(ni+2, rows+2, tfac, templ, temp2);
/# all devices (except the last one) update the lower halo to the host =/

if (tid != NUM_THREADS-1){
}
if (tid != 0){

}

#pragma omp barrier
if (tid != 0){

}

if (tid != NUM_THREADS-1){

}

temp_tmp = templ;
templ = temp2;
temp2 = temp_tmp;

}

}
}

#pragma acc update host(temp2[rows*LDA:LDA])
/% all devices (except the first one) update the upper halo to the host #/
#pragma acc update host (temp2[LDA:LDA])

/% all host threads wait here to make sure halo data from all devices
have been updated to the host =/

/* update the upper halo to all devices (except the first one) =/
#pragma acc update device(temp2[0:LDA])
/#* update the lower halo to all devices (except the last one) =/

#pragma acc update device(temp2[(rows+1)*LDA:LDA])

/# update the final result to host */
#pragma acc update host(templ[LDA:row=LDA])

ALGoRrITHM 5: Multi-GPU implementation with hybrid model of 2D heat equation.

allocate separate memory for these partial data; instead we
just need to use private pointer to point to the different
positions of the shared variables templ_h and temp2_h. Let
tid represent the id of a thread; then that thread points to
the position tid * rows = (ni + 2) of the grid (because it
needs to include the halo region), and it needs to transfer
(rows + 2) % (ni + 2) data to the device where rows are
equal to nj/NUM_THREADS. The kernel that updates the
temperature in the multi-GPU implementation is exactly the
same as the one in single GPU implementation.

Figure 3(b) shows the performance comparison of the
different implementations, that is, single and multi-GPU

implementations. While comparing the performances of
multi-GPU with single GPU, we notice that there is a trivial
performance difference when the problem size is small.
However, there is a significant increase in performance using
multi-GPU for larger grid sizes. With the grid size as 4096 =*
4096, the speedup of using two GPUs is around 2x times
faster than the single GPU implementation. This is because
as the grid size increases, the computation also increases
significantly, while the halo data exchange is still small
enough. Thus, the ratio of the computation/communication
becomes larger. Using multi-GPU can be quite advantageous
to decompose the computation.
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5. Multi-GPU Support with
OpenACC Extension

We see that programming using multi-GPU using OpenMP
and OpenACC hybrid model shows significant performance
benefits in Section 4. However, there are some disadvantages
too in this approach. First, the users need to learn two
different programming languages which may impact the pro-
ductivity. Second, in this approach the device-to-device com-
munication happens via the host bringing more unnecessary
data movement. Third, providing support for such hybrid
model is a challenge for compilers. Compiler A provides
support for OpenMP and Compiler B provides support for
OpenACG; as a result, it is not straightforward for different
compilers to interact with each other. For instance, Cray
compiler does not allow OpenACC directives to appear inside
OpenMP directives [28]; therefore, the examples in Algo-
rithms 3 and 5 are not compilable by Cray compiler. Although
CAPS compiler provides support for OpenACC, it still uses
an OpenMP implementation from another host compiler,
also a challenge to follow and maintain. Ideally, one program-
ming model should provide support for multi-GPU. Unfortu-
nately the existing OpenACC standard does not yet provide
support for multiple accelerator programming. To solve these
problems, we propose some extensions to the OpenACC
standard in order to support multiple accelerator devices.

5.1. Proposed Directive Extensions. The goal is to help the
compiler or runtime realize which device the host will com-
municate with, so that the host can issue the data movement
and kernel launch request to the specific device. The new
extensions are described as follows:

(1) #pragma acc parallel/kernels deviceid (sca-
lar-integer-expression): this is to place the correspond-
ing computing region into a specific device;

(2) #tpragma acc data deviceid (scalar-integer-ex-
pression): this is the data directive extension for the
structured data region;

(3) #pragma acc enter/exit data deviceid (sca-
lar-integer-expression); this is the extension for
unstructured data region;

(4) #pragma acc wait device (scalar-integer-expres-
sion): this is used to synchronize all activities in a
particular device since by default the execution in
each device is asynchronous when multiple devices
are used;

(5) #pragma acc update peer to (list) to_device
(scalar-integer-expression) from (list) from device
(scalar-integer-expression);

(6) void acc_update_peer(voidx dst, int to_
device, const void* src, int from. device,
size_t size).

The purpose of (5) and (6) is to enable device-to-device
communication. This is particularly important when using
multiple devices, since in some accelerators device can
communicate directly with another device without going

through the host. If the devices cannot communicate directly,
the runtime library can choose to first transfer the data to a
temporary buffer in the host and then transfer it from the host
to another device. For example, in CUDA implementation,
two devices can communicate directly only when they are
connected to the same root I/O Hub. If this requirement
is not satisfied, then the data transfer will go through the
host. (Note that we believe these extensions will address
direct device-to-device communication challenge; however,
such direct communication also requires necessary support
from the hardware. Our evaluation platform did not fulfill the
hardware needs; hence, we have not evaluated the benefit of
these extensions quantitatively yet and we will do so as part
of the future work.)

5.2. Implementation Strategy. We implement the extensions
discussed in Section 5.1 in our OpenUH compiler. Our
implementation is based on the hybrid model of pthreads
+ CUDA. CUDA 4.0 and later versions simplify multi-
GPU programming by using only one thread to manip-
ulate multiple GPUs. However, in our OpenACC multi-
GPU extension implementation, we use multiple pthreads to
operate multiple GPUs and each thread is associated with
one GPU. This is because the memory allocation and free
operations are blocking operations. If a programmer uses
data copy/copyin/copyout inside a loop, the compiler
will generate the corresponding data memory allocation
and transfer runtime APIs. Since the memory allocation is
blocking operation, the execution in multiple GPUs cannot
be parallel. CUDA code avoids this by allocating memory for
all data first and then performs data transfer. In OpenACC,
however, this is unavoidable because all runtime routines
are generated by the compiler and the position of these
routines cannot be randomly placed. Our solution is to create
a set of threads and each thread manages the context of
one GPU which is shown in Figure 5. This is a task-based
implementation. Assume we have n GPUs attached to a CPU
host, initially the host creates n threads, and each thread is
associated with one GPU. Each thread creates an empty first-
in first-out (FIFO) task queue which waits to be populated by
the host main thread. Depending on the directive type and
deviceid clause in the original OpenACC directive annotated
program, the compiler generates the task enqueue request for
the main thread. The task here means any command issued
by the host and executed either on the host or on the device.
For example, memory allocation, memory free, data transfer,
kernel launch, and device-to-device communication, all of
these, are different task types.

Algorithm 8 includes the definitions of the task structure
and the thread controlling a GPU (refer it to GPU thread).
The task is executed only by GPU thread. A task could
be synchronous or asynchronous to the main thread. In
the current implementation, most tasks are asynchronous
except device memory allocation because the device address
is passed from a temporary argument structure, so the GPU
thread must wait for this to finish. Each GPU thread manages
a GPU context, a task queue, and some data structures in
order to communicate with the master thread. Essentially this
is still the master/worker model and the GPU threads are
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FIGURE 5: Task-based multi-GPU implementation in OpenACC. T; (i = 1,2,...) means a specific task.

(1) function WORKER_ROUTINE

(2) Create the context for the associated GPU

(3) pthread_mutex_lock(- - -)

(4) context_created++;

(5) while context_created! = num_devices do

(6) pthread_cond_wait(---) >wait until all threads created their contexts

7) end while

(8) pthread_mutex_unlock(- - -)

9) if context_created == num_devices then

(10) pthread_cond_broadcast(: - - )

11) end if

(12) Enable peer access among all devices

(13) while (1) do

(14) pthread_mutex_lock(&cur_thread — queue_lock)

(15) while cur_thread — queue_size == 0 do

(16) pthread_cond wait(&cur_thread — queue_ready, &cur_thread — queue_lock)

17) if cur_thread — destroyed then

(18) pthread_mutex_unlock(&cur_thread — queue_lock)

(19) Synchronize the GPU context  >the context is blocked until the device has
completed all preceding requested tasks

(20) pthread_exit(NULL)

(21) end if

(22) end while

(23) cur_task = cur_thread — queue_head; >fetch the task from the queue head

(24) cur_thread — queue_size——;

(25) if cur_thread — queue_size == 0 then

(26) cur_thread — queue_head = NULL;

(27) cur_thread — queue_tail = NULL;

(28) else

(29) cur_thread — queue_head = cur_task — next;

(30) end if

(31) pthread_mutex_unlock(&cur_thread — queue_lock);

(32) cur_task — routine((voids)cur_task — args); >execute the task

(33) end while

(34) end function

ALGORITHM 6: The worker algorithm for multi-GPU programming in OpenACC.

workers. Algorithms 6 and 7 show a detailed implementation
for the worker thread and master thread, respectively.

To enable device-to-device communication, we must
enable such peer-to-peer access explicitly and this requires
that all worker threads have created the GPU contexts. So

each worker first creates the context for the associated GPU,
and then it waits until all workers have created the GPU
contexts. The worker that is the last one to create the context
will broadcast to all worker threads so that they can start
to enable the peer-to-peer access. The worker then enters
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1

(1) function ENQUEUE_TASK_XXXX

(2 Allocate memory and populate the task argument
(3) Allocate memory and populate the task

(4) pthread_mutex_lock(&cur_thread — queue_lock)

(14) pthread_mutex_unlock(&cur_thread — queue_lock);
(15) if cur_task — async == 0 then

(22) end function

(5) if cur_thread — queue_size == 0 then  >push the task into the FIFO queue

(6) cur_thread — queue_head = cur_task;

(7) cur_thread — queue_tail = cur_task;

(8) pthread_cond_signal(&cur_thread — queue_ready); >signal the worker that the queue is not empty and the task is ready
9) else

(10) cur_thread — queue_tail — next = cur_task;

11) cur_thread — queue_tail = cur_task;

(12) end if

(13) cur_thread — queue_size++;

>if the task is synchronous

(16) pthread_mutex_lock(&cur_thread — queue_lock);

17) while cur_task — work_done == 0 do >wait until this task is done

(18) pthread_cond_wait(&cur_thread — work_done, &cur_thread — queue_lock);
(19) end while

(20) pthread_mutex_unlock(&cur_thread — queue_lock);

(21) end if

ALGORITHM 7: The master algorithm for multi-GPU programming in OpenACC.

typedef struct _task.s

pthread mutex_t queue_lock;

pthread_cond_t work_done;
pthread_cond_t queue_empty;
} _gpu_thread;

{
int type; //task type (e.g. memory allocation and kernel launch, etc.)
void* (xroutine) (voidx); // the task routine
_work_args s#args; // point to the task argument
int work_done; // indicate whether the task is done
int async; // whether the task is asynchronous
struct _task.s #next; // next task in the task queue
} _task;
typedef struct
{

int destroyed; // whether this thread is destroyed

int queue_size; // the task queue size

pthread_t thread; // the thread identity

context_t *context; // the GPU context associated with this thread
int context_id; // the GPU context id

_task *queue_head; // head of the FIFO task queue

_task *queue_tail; // tail of the FIFO task queue

pthread_cond_t queue_ready; // the task queue is not empty and ready

ALGORITHM 8

an infinite loop that waits for the incoming tasks. When the
task is ready in the FIFO task queue, it will fetch the task
from the queue head and execute that task. When there is
no task available, the worker just goes to sleep to save CPU
resource. Whenever a master pushes a task into the FIFO
queue of a worker, it will signal to that worker that the queue
is not empty and the task is ready. If the master notifies that

the worker be destroyed, the worker will complete all pending
tasks and then exit (see Algorithm 6).

5.3. Benchmark Example. In this section, we will discuss how
to port some of the benchmarks discussed in Section 4 using
the OpenACC extensions instead of using the hybrid model.
The programs using the proposed directives are compiled
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{

start = idsblocks;

{

{

}

}
}

}

for(d=0; d<num_devices; d++)
blocks = n/num_devices;

end = (id+1)*blocks;

#pragma acc data copyin(A[start#n:blockss*n])\
copyin(B[Om#*n])\
copyout (C[start*n:blockss*n])\
deviceid(d)

#pragma acc parallel deviceid(d)\
num_gangs (32) vector_length(32)

#pragma acc loop gang
for(i=start; i<end; i++){
#pragma acc loop vector
for(j=0; j<n; j++){
float ¢ = 0.0f;
for (k=0; k<n; k++)
c += A[isn+k] * Blk*n+j];
Cli*n+j] = c;

for(d=0; d<num_ devices; d++){
#pragma acc wait device(d)

ALGORITHM 9: A multi-GPU implementation of MM using OpenACC extension.

by OpenUH compiler with “-fopenacc -nvce,-arch=sm_35,-
tmad=false” flag. We also compare the performance with that
of the CUDA version. All CUDA codes are compiled using
“-0O3 -arch=sm_35 -fmad=false” flag.

Algorithm 9 shows a code snippet of multi-GPU imple-
mentation of matrix multiplication using the proposed Ope-
nACC extensions. Using the proposed approach, the user
still needs to partition the problem explicitly into different
devices. This is because if there is any dependence between
devices, it is difficult for the compiler to do such analysis and
manage the data communication. For the totally independent
loop, we may further automate the problem partition in
compiler as part of the future work. Figure 6 shows the per-
formance comparison using different models. We can see that
the performance of manual CUDA version and OpenACC
extension version is much better than that of the hybrid
model. CAPS compiler seems to have not performed well at
all using the hybrid model implementation. The performance
of the proposed OpenACC extension version is the best and
itis very close to the optimized CUDA code. There are several
reasons for this. First, the loop translation mechanisms from
OpenACC to CUDA in different compilers are different.
Loop translation means the translation from OpenACC
nested loop to CUDA parallel kernel. In the translation step,
the OpenACC implementation in OpenUH compiler uses
redundant execution model which has no synchronization
between different OpenACC parallelism like gang and vector.

However, PGI compiler uses another execution model which
loads some scalar variables into shared memory in gang
parallelism and then the vector threads fetch them from
shared memory. The detailed comparison between these two
loop translation mechanisms is explained in [29]. OpenUH
compiler does not need to do those unnecessary shared
memory store and load operations and therefore reduces
those overhead. Second, we found that CAPS compiler uses
similar loop translation mechanism as OpenUH. However,
its performance is still worse than OpenUH compiler. The
possible reason is that it has nonefficient runtime library
implementation. Since CAPS itself does not provide OpenMP
support, it needs complex runtime management to interact
with the OpenMP runtime in other CPU compilers. This
result demonstrates the effectiveness of our approach that
not only simplifies the multi-GPU implementation but also
maintains high performance.

We also port the 2D heat equation to the GPUs using the
proposed OpenACC directive extension. In the code level, the
user does not need to make the device-to-device communica-
tion go through the host anymore; instead the update peer
directive can be used to reduce the code complexity
and therefore improve the implementation productivity.
Algorithm 10 shows the detailed multi-GPU implementation
code using the OpenACC extension and Figure 7 explains
this implementation graphically. Compared to Figure 4 that
uses the hybrid model, it is obvious to see that the data
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}

}

}

for(d=0; d<num_devices; d++){

#pragma acc enter data copyin(templ h[d*rows*LDA:(rows+2)*LDA]) device(d)
#pragma acc enter data copyin(temp2 h[dxrows*LDA:(rows+2)*LDA]) device(d)

for(istep=0; istep<nstep; istep++){

for(d=0; d<num_devices; d++)
step_kernel_(ni+2, rows+2, tfac, templ h+dxrows*LDA, temp2 h+dsrows=LDA)
}
/# wait to finish the kernel computation */
for(d=0; d<num_devices; d++){
#pragma acc wait device(d)
}
/+* exchange halo data */
for(d=0; d<num_devices; d++){
if(d > 0){
#pragma acc update peer to(temp2 h[dsrows#LDA:LDA]) to_device(d)
from(temp2_h[d*rows*LDA:LDA]) from_device(d-1)
}
if(d < num_devices - 1){
#pragma acc update peer to(temp2 h[(d+1)srows*LDA+LDA:LDA]) to_device(d)
from(temp2 h[(d+1) *rows*LDA+LDA:LDA]) from device(d+1)
}
}
/#* swap pointer of in and out data */
temp_tmp = templ_ h;
templh = temp2. h;
temp2_h = temp_tmp;

for(d=0; d<num_devices; d++){

#pragma acc exit data copyout (templ h[(d+rows+1)*LDA:rows*LDA]) deviceid(d)

for(d=0; d<num_devices; d++){

#pragma acc wait device(d)

ArGorrTHM 10: Multi-GPU implementation with OpenACC extension of 2D heat equation.
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FIGURE 6: Performance comparison for MM using multiple models. PGI and CAPS compilers compile the hybrid model implementation.
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transfer between devices is much simpler now. Figure 8 shows
the performance comparison using different models. The per-
formance of the hybrid model version using CAPS compiler is
not shown here because it is too slow, that is, around 5x slower
than PGI’s performance. When the grid size is 4096 s 4096,
the execution time of Open ACC version is around 60 seconds
faster than the hybrid model and it is close to that of the
optimized CUDA code. We notice that there is almost no
performance loss with our proposed directive extension.

6. Conclusion and Future Work

This paper explores the programming strategies of multi-
GPU within a single node using the hybrid model, OpenMP
and OpenACC. We demonstrate the effectiveness of our
approach by exploring three applications of different char-
acteristics. In the first application where there are different
kernels, each kernel is dispatched to one GPU. The second
application has a large workload that is decomposed into
multiple small subworkloads, after which each subworkload
is scheduled on one GPU. Unlike the previous two appli-
cations that consist of totally independent workloads on
different GPUs, the third application has some communi-
cation between different GPUs. We evaluated the hybrid

model with these three applications on multi-GPU and
noticed reasonable performance improvement. Based on
the experience gathered in this process, we have proposed
some extensions to OpenACC in order to support multi-
GPU. By using the proposed directive extension, we can
simplify the multi-GPU programming but still obtain much
better performance compared to the hybrid model. Most
importantly, the performance is close to that of the optimized
manual CUDA code.
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