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Abstract—GPUs have been successfully applied in scientific
computing in the last decade. Many machine learning algorithms
have also used GPUs to accelerate their computations. This
includes the Support Vector Machine (SVM) which is a classical
machine learning algorithm that has been successfully used
in many applications such as text classification and image
recognition. There have been many open-source CUDA SVM
implementations. However, CUDA versions of SVM are not
portable and difficult to maintain or redesign. Porting SVM to
a directive-based portable model like OpenACC will make it
possible to target multiple accelerators.

In this paper, we use OpenACC programming model to
parallelize SVM and produce ACC-SVM. Since the high-level
programming model simplifies the programming by sacrificing
performance, there is a performance gap between the OpenACC
and the CUDA SVM versions. In order to improve the per-
formance of ACC-SVM, we apply our auto-tuning framework
to decrease the gap between the CUDA and the OpenACC
performance results. The performance difference between the
optimized ACC-SVM resulting from the auto-tuner and the
CUDA SVM is 15.58% for the kernels code and 7.87% with
respect to the whole application. For many applications this loss
of performance is more than made up for by the convenience
and portability of the high-level approach.

Index Terms—Accelerators; GPU; OpenACC; CUDA; Auto-
tuning

I. INTRODUCTION

Heterogeneous architectures that comprise CPU processors
and computational accelerators such as GPUs have been
increasingly adopted for scientific computing. The low-level
programming models for GPUs such as CUDA and OpenCL
offer users programming interfaces with execution models
closely matching the GPU architecture. Effectively using these
interfaces for creating highly optimized applications require
programmers to thoroughly understand the underlying archi-
tecture, as well as significantly change the program structure
and algorithms. This affects both productivity and perfor-
mance. On the other hand, standardized directive-based models
such as OpenACC [13] and OpenMP 4.x for accelerators [2]
require developers to insert directives and runtime calls into
the existing source code offloading portions of Fortran or
C/C++ codes to be executed on accelerators.

Directives are high-level language constructs that program-
mers can use to provide useful hints to compilers to perform
certain transformations and optimizations on the annotated
code region. The use of directives can significantly improve

programming productivity. Users can still achieve high perfor-
mance of their program comparable to code written in CUDA
or OpenCL, subjected to the requirements that a ‘careful’
choice of directives and compiler optimization strategies be
made. One such scenario encountered quite commonly in a
program is loop scheduling.

Many machine learning algorithms have also used GPUs
to accelerate their computations. This includes the Support
Vector Machine (SVM) which is a classical machine learn-
ing algorithm mainly used for classification and regression
analysis. This technique has been successfully used in many
applications such as text classification and image recognition.
There have been many open-source CUDA SVM imple-
mentations including cuSVM [7], GPUMlib [12] and GPU-
LibSVM [4]. CUDA versions of SVM are not portable and
difficult to maintain or redesign. Porting SVM to a directive-
based portable model like OpenACC will make it possible to
target multiple accelerators. To the best of our knowledge, the
only directive-based implementation of SVM is of Codreanu
et al. [8] using their own toolkit called GPSME and their own
directive syntax.

In this paper, we use OpenACC programming model to
parallelize SVM. Since the high-level programming model
simplifies the programming by sacrificing performance, there
is a performance gap between an OpenACC program and the
same program developed using CUDA. In order to improve the
performance of SVM OpenACC program, we apply the loop
scheduling optimization [17] to improve the performance.

The main contributions of this paper includes:

• We develop the SVM algorithm using the high-level
directive-based programming model OpenACC.

• We apply loop scheduling optimization to improve the
loop mapping from the loop nests to the GPU threads.

• We compare the performance of ACC-SVM and CUDA
SVM and we get comparable results.

The organization of this paper is as follows. Section II gives
an overview of GPU architecture, OpenACC programming
model, and SVM. In Section III, we explain the methodology
used for developing SVM using OpenACC and the application
of loop scheduling optimization in order to improve perfor-
mance. Performance results are discussed in Section IV. We
conclude our work in Section V.



II. BACKGROUND

A. GPU Architecture

GPU architectures differ significantly from that of tradi-
tional processors. Employing a Single Instruction Multiple
Threads (SIMT) architecture, NVIDIA GPUs have hundreds
of cores that can process thousands of software threads simul-
taneously. GPUs organize both hardware cores and software
threads into two-level of parallelism. Hardware cores are
organized into an array of Streaming Multiprocessors (SMs),
each SM consisting of a number of cores named as Scalar
Processors (SPs). Each SM has its own L1 cache which is
not cache coherent, and all SMs share a unified L2 cache.
Since GPU architecture is widely known and due to space
constraints, we will not detail the structure of the memory
hierarchy of GPUs.

B. OpenACC Programming Model

Directive-based high-level programming models for acceler-
ators, such as OpenACC and OpenMP 4.x, provide extensions
to Fortran, C and C++ to support accelerators. They have
been designed to address the programmability challenges of
GPUs. Using these programming models, programmers insert
compiler directives into a program to annotate portions of code
to be offloaded onto accelerators for execution. This approach
relies heavily on the compiler to generate efficient code
for thread mapping and data layout. It could be potentially
challenging to extract optimal performance using such an
approach rather than using other explicit programming models
such as CUDA. However, directive-based models simplify
programming on heterogeneous systems and save development
time, while also preserving the original code structure assisting
in code portability. OpenACC allows users to specify three
levels of parallelism in a data parallel region: gang, worker
and vector parallelism to map the loop nests to the multiple-
level-thread hierarchy of GPUs. The user provides hints to map
these three-levels of parallelism to GPU threads. However, the
effectiveness of the mapping relies on the compiler and run-
time implementation strategies. In this paper, we use an open-
source, validated OpenACC compiler called OpenUH [15].

Usually it is easy to develop a correct OpenACC program,
but it is difficult to achieve comparable performance to the one
using low-level models such as CUDA. Therefore, different
optimizations need to be applied. In a previous work [17],
we developed an auto-tuning framework that automatically
tunes the loop schedules in different kernels of OpenACC
applications. The methodology of the framework is to retrieve
the optimal loop schedule, threads topology, and threads size
in different dimensions based on the modeled memory access
cost. The framework also takes the data locality into account
by modeling the cache hit rate for all loop schedules.

C. Overview of Support Vector Machine (SVM)

Support Vector Machine (SVM) [16] is a classical machine
learning algorithm to perform classification and regression
analysis. In this section, we present three main SVM algo-
rithms: (1) the classical linear SVM that separates the dataset

by a separating hyperplane, (2) non-linear SVM that can be
used in non-linear classifications, and (3) multi-class SVM that
handles multi-class classifications.

1) Linear SVM: Given l samples (x1, y1), ..., (xl, yl) with
xi ∈ Rn, n is the dimension size of each data sample.
Consider Figure 1, in which x’s denote positive training
samples, o’s denote negative training samples. The positive
samples are labeled as “+” and the negative samples are
labeled as “-”. The goal of SVM is to form a separating
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Fig. 1: SVM Classification

hyperplane H that separates the positive and negative samples
as far as possible, which means the margin between the lines
H1 and H2 is maximized. The output or the class label of
each training sample xi can be computed by

O(xi) = wTxi + b (1)

where w is the normal vector to the separating hyperplane
and (xi, yi) is a training sample. b is a intercept term.
For linearly separable datasets, the following inequalities are
satisfied:

wTxi + b =

{
≥ 1 if yi = 1

≤ −1 if yi = −1
(2)

This is equivalent to yi(wTxi+b) ≥ 1. The nearest negative
samples are in line H2 which satisfy O(xi) = −1, and the
nearest positive samples are in line H1 which satisfy O(xi) =
1. The lines H1 and H2 are called gutter lines. The margin is
defined as twice the distance between the hyperplane and the
gutter line

Maximizing the margin is an optimization problem with a
convex quadratic objective and only linear constraints. The
method of Lagrange multiplier can be used to solve this op-
timization problem. This optimization problem is a Quadratic
Programming (QP) problem where the objective only depends
on Lagrangian multiplier Once this problem is solved , then
we can easily compute the normal vector w and the intercept
b. Once the model using the training samples is built, we can
predict a new sample x. Then, we can assign a class to x:
positive or negative based on the y value.

2) Non-linear SVM: In some cases, the samples are not
linearly separable. SVM, however, can still linearly separate
them by mapping the original input space to a higher di-
mensional dot-product feature space. Such mapping is done
by a non-linear kernel function K(xi, xj). Some commonly
used kernel functions are Linear, Polynomial, Radial basis, and



Sigmoid explained in [9]. Although mapping data to a high
dimensional feature space usually increases the chance that the
data is separable, we cannot guarantee that it always succeeds.
And in some cases, finding a separating hyperplane might be
susceptible to outliers. To make the algorithm less sensitive
to outliers, l1 regularization is applied to the optimization
problem using a new parameter C that determines the tradeoff
between the maximization of the margin and the minimization
of the errors.

3) Multi-class SVM: The classical SVM was originally
designed for binary classification. In multi-class classification,
N independent binary classifiers f i can be combined together
to solve the multi-class problem. Assume for the l samples,
yi ∈ Y , ∀i and Y = 1, ...,K which means every sample
belongs to one of the K classes. An output code matrix R
with size K × N is constructed, where K is the number
of classes, N is the number of tasks, and Rij ∈ {−1, 1}.
Then each sample is trained by all of the built classifiers.
There are several ways to construct the total number of binary
classifiers [9].

In this paper, we develop the OpenACC version of SVM.
Sequential Minimal Optimization (SMO) [14] is a popular
algorithm used to solve the SVM QP problem by iteratively
solving a series of smaller QP subproblems with only two
unknown variables that are solvable analytically. Cao et al. [6]
proposed the parallel SMO algorithm called PSMO to paral-
lelize SVM by distributing the dataset into multiple computing
nodes. Herrero-Lopez et al. [9] improved this algorithm and
developed P2SMO algorithm for multi-class classification. Our
OpenACC implementation is based on the CUDA version of
P2SMO implementation.

III. ACC-SVM: OPENACC IMPLEMENTATION OF SVM

We develop the SVM OpenACC version from the CUDA
P2SMO algorithm for multi-class classification. The advantage
of this porting is to make the SVM code portable on other
accelerators besides GPU, and easy to maintain. To convert
a CUDA code into OpenACC code, we need to work on
two main parts: data and computation. The data part includes
memory allocation, memory deallocation, data movement and
data synchronization. The generic methodology to convert
CUDA related APIs to OpenACC directives is the following.

1) If a data is allocated by cudaMalloc() and freed by
cudaFree(), then the host variable name of this data
will be put in acc data directive if the data lifetime
can be within a structured block. In OpenACC, the
device variable name for that data is no longer needed
since the runtime has a global hash table to maintain all
data that have both the host copy and device copy [15].
If the data memory allocation and deallocation are in
different functions, then they will be put in acc enter
data and acc exit data directives.

2) If a data has both host and device copies and uses
cudaMemcpy() to be moved from host to device
right after device memory allocation, then it is put into
OpenACC copyin data clause.

3) If a data has both host and device copies and uses
cudaMemcpy() to be moved from device to host right
before device memory deallocation, then it is put into
OpenACC copyout data clause.

4) If a data has both host and device copies and uses
cudaMemcpy() to be moved from host to device right
after device memory, and moved from device to host
right before device memory free, then it is put into
OpenACC copy data clause.

5) If a data has both host and device copies but does not
use any cudaMemcpy() to be moved from host to
device right after device memory allocation, or moved
from device to host right before device memory free
operation, then it is put into OpenACC create data
clause.

6) If a data does not have host copy which means its device
memory is allocated with cudaMalloc() and it is a
temporary data used on device, then we use OpenACC
acc_malloc() to replace the CUDA API call.

7) If there is any data movement within the lifetime of
a data, then we use acc update host or acc
update device to replace the cudaMemcpy() call.
Whether host or device is used depends on the data
movement direction.

After handling the data part, the CUDA kernels are replaced
by the sequential loop nests code. However, it is error prone
to replace all CUDA kernels at one time. To guarantee the
correctness of the conversion, one can firstly use OpenACC
host_data directive to call these kernels. Then these kernels
are replaced to sequential code one by one. The conversion
from a CUDA kernel to OpenACC kernel is the reverse oper-
ation of transforming a loop nest to CUDA kernel. Different
loop transformations may be applied for different kernels.

In this work, we followed the methodology presented above
to develop an OpenACC version of SVM. Then, we applied
our auto-tuning framework to improve performance.

IV. PERFORMANCE EVALUATION

The experimental platform is Intel Xeon processor E5520
with frequency 2.27GHz and 32GB main memory and an
Nvidia Quadro K6000 GPU card which uses K40 architecture.
The CUDA SVM [1] is compiled by nvcc compiler with flag “-
O3”. The OpenACC SVM is compiled by OpenUH compiler.
The dataset we use come from different sources. adult is from
UCI [3] dataset, letter and shuttle are from Statlog dataset [5];
both mnist [11] and usps [10] are hand-written datasets used
for text recognition. The characteristics of each dataset are
presented in Table I where C is the regularization parameter
and γ is the stopping parameter of the SMO algorithm.

TABLE I: Characteristics of the experiment dataset
Dataset Training Samples Features Classes C γ
adult 32561 123 2 100 0.001
mnist 30000 780 10 10 0.125
usps 7291 256 10 100 0.001
letter 15000 16 26 100 0.001

shuttle 43500 9 7 100 0.001



Figure 2 shows the kernel performance of ACC-SVM
against CUDA-SVM. As we can see, there is significant
performance improvement after applying loop scheduling op-
timization enabled by our auto-tuning framework. The average
kernel performance speedup for all datasets is 1.92x. The
kernel performance gap between the two versions is 15.58%.
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Fig. 2: Kernel performance of ACC-SVM against CUDA-SVM

Figure 3 shows the total execution time of the application of
ACC-SVM against CUDA-SVM; this includes the kernels time
plus the data movement and the host code time. The average
speedup after the loop scheduling optimization for the whole
application is 1.23x. The application performance gap between
ACC-SVM with optimization and CUDA-SVM is 7.87%.
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Fig. 3: Application performance of ACC-SVM against CUDA-
SVM

V. CONCLUSION

This paper presented the directive-based implementation
of SVM using OpenACC. We start from the CUDA SVM
version and show the methodology of transformations needed
when using OpenACC. Porting SVM to OpenACC makes it
possible to target multiple accelerators and renders the code
easy to maintain and redesign. Our approach converts all
CUDA kernels in the application incrementally. Moreover, we
applied our auto-tuning framework that optimizes loop nest
scheduling. This improves significantly the kernel performance
as well as the whole application performance. The perfor-
mance difference between the optimized ACC-SVM resulting
from the auto-tuner and the CUDA SVM is 15.58% for the
kernels code and 7.87% with respect to the whole application.
For many applications this loss of performance is more than

made up for by the convenience and portability of the high-
level approach.
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