
Deep Learning at Scale on NVIDIA V100
Accelerators

Rengan Xu, Frank Han and Quy Ta
AI Engineering, Server and Infrastructure Systems

Dell EMC
Austin, TX, United States

{Rengan.Xu, Frank.Han, Quy.Ta}@Dell.com

Abstract—The recent explosion in the popularity of Deep
Learning (DL) is due to a combination of improved algorithms,
access to large datasets and increased computational power. This
had led to a plethora of open-source DL frameworks, each with
varying characteristics and capabilities. End users are then left
with the difficult task of determining software and hardware
configurations to get optimal performance from each framework.

We share our experiences and develop best practices for DL
training with TensorFlow, MXNet and Caffe2. The paper also
looks at DL inferencing with TensorRT on NVIDIA V100 Volta
GPUs. It focuses on one of the more prominent neural network
architectures, Resnet50, combined with Imagenet dataset. We
quantify the impact of hardware attributes on DL workloads
such as the usage of PCIe vs NVLink GPUs, performance past
a single worker node, effect of high speed interconnect such as
InfiniBand EDR on training and the implication of utilizing a
network attached storage and its advantages.

Index Terms—Deep Learning, Distributed Training, GPU,
Benchmarking, V100

I. INTRODUCTION

In recent years, Deep Learning (DL) [1] has achieved
great success in many fields such as computer vision, speech
recognition, natural language processing and so on. The recent
popularity of deep learning is due to a combination of im-
proved algorithms, access to large data sets and increased com-
putational power. The popularity of DL has led to a plethora
of open-source DL frameworks such as TensorFlow [2] from
Google, Apache MXNet [3], and Caffe2 [4] from Facebook.
All of these frameworks can utilize GPUs to accelerate the
compute intensive portions of the neural network models.
Traditional deep learning models targeted at image related use
cases comprise of a lot of matrix multiply operations and the
GPU architecture is ideal to parallelize these operations and
therefore reducing the model training time significantly.

Since each DL framework has its own characteristics, the
end users are then left with the difficult task of determining
the software and hardware configurations to get the optimal
performance from each framework. In this paper, we chose a
computationally intensive model and train it under a variety
of conditions and frameworks in order to draw insight and
develop a set of best practices for each. We used TensorFlow,
MXNet and Caffe2. All tests were run on a Dell EMC cluster
containing multiple nodes with Nvidia V100 “Volta” GPUs.
We will investigate whether they scale well on the cluster and
tune the runtime parameters to ensure they scale as best as

possible. If there are still issues that prevent the scaling, then
we profile the application and analyze the possible reasons
for this behavior. Profiling allows us to ascertain the CPU,
memory, network and storage demands for that particular
neural network model and framework.

Deep Learning consists of two main phases: training and
inference. Besides the training experiments we just mentioned,
inference also plays a key role as it is the ultimate goal of any
deep learning exercise. For inference, we will use Nvidia’s
TensorRT library as it not only supports inference with the
commonly used 32-bit floating point (FP32), but also with 8-
bit integers (INT8). We will compare the throughput advantage
of INT8, and highlight the negligible difference in accuracy
when compared to FP32.

The main contributions of this paper include:
• We benchmarked deep learning training on V100 GPUs

at scale (past a single worker node) using different
frameworks and libraries and provided a comprehensive
comparison and analysis. This relates to the usage of the
CPU, memory, network and storage.

• The performance difference for DL workloads of V100
GPUs using NVLink and PCIe GPU interconnects are
compared.

• The training performance with FP32 and the reduced
precision FP16 are compared.

• The characteristics of storage and node interconnect have
been measured and analyzed.

• We compared the deep learning inference throughput with
FP32 and INT8, and conclude that INT8 can also achieve
the comparable accuracy with FP32.

The organization of this paper is as follows: Section II
discusses the related work. Section III introduces V100 GPUs
and several deep learning frameworks. Section IV provides
different types of tuning and analysis on DL training with
TensorFlow, MXNet and Caffe2 frameworks. Then Section V
presents the inference throughput and accuracy comparison be-
tween INT8 and FP32. We conclude our work in Section VI.

II. RELATED WORK

Shi et al. [5] provided a comprehensive comparison for dif-
ferent deep learning frameworks including Caffe, CNTK [6],
TensorFlow, and Torch [7]. They benchmarked those frame-
works on CPU, single GPU and multi-GPUs within a single

23

2018 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems
(PMBS)

978-1-7281-0182-8/18/$31.00 ©2018 IEEE
DOI 10.1109/PMBS.2018.00006

node. Their GPU tests used the Pascal GPU. In contrast we
perform multi-GPU tests on single node, and scale up to eight
nodes and 32 GPUs. We also use the latest Volta GPUs which
include many features geared specifically for DL applications
(will be discussed in Section III). In addition, we profile the
frameworks to get an idea of the particular resource utilization.
DAWNBench [8] proposed a benchmark that focused on end-
to-end training time to achieve a state-of-the-art accuracy,
as well as maintaining the accuracy in the inference phase.
The paper’s goal was to provide a means of evaluating many
trade offs in deep learning systems. Uber’s Horovod [9] first
evaluated the TensorFlow’s own distributed implementation
and found that there is a large gap between the actual speedup
and the ideal speedup. Then they went on to implement an MPI
overlay for TensorFlow and achieved 88% efficiency. These
experiments were performed in a P100 GPU cluster where all
nodes are connected with 25Gbps RDMA-capable Ethernet.
Because of its high scaling efficiency, we leverage Horovod
framework for running TensorFlow across multiple nodes,
but our experiments are on a V100 GPU cluster where all
nodes are connected with 100Gbps RDMA-capable InfiniBand
network. Goyal et al. [10] applied several techniques to train
Resnet-50 model with a minibatch size of 8192 on 256 GPUs,
while still matching small minibatch accuracy. You et al. [11]
took only 14 minutes to train Resnet-50 to achieve 74.9% top-
1 accuracy with 512 Intel Knights Landing coprocessors.

III. BACKGROUND

During the 2017 GPU Technology Conference (GTC),
NVIDIA announced the Volta-based V100 GPU, of which
there are two types: V100-PCIe and V100-SXM2. V100-
PCIe GPUs are inter-connected by PCIe buses and the bi-
directional bandwidth is up to 32 GB/s. V100-SXM2 GPUs
are inter-connected by NVLink and each GPU has six links
with the bi-directional bandwidth of each link being 50 GB/s.
The bi-directional bandwidth for the NVLink implementation
between GPUs is up to 300 GB/s which is 9.4 times more
than the bandwidth available in the PCIe implementation. The
V100 is the first Nvidia GPU to contain “Tensor Cores” which
are cores specifically designed for 4 x 4 matrix multiplication
operations which are a major part of DL models. These
cores are essentially a collection of ALUs for performing 4x4
matrix operations: specifically a fused multiply add (FMA).
To elaborate, this translates to three matrices A, B and C
and the operation being A*B+C, multiplying two 4x4 FP16
matrices together and then adding to a FP16/FP32 4x4 matrix
to generate a final 4x4 FP16/FP32 matrix. By fusing matrix
multiplication and add in one unit, the GPU can achieve high
FLOPS for this operation. A single Tensor Core performs the
equivalent of 64 FMA operations per clock (for 128 FLOPS
total). With 8 such cores per Streaming Multiprocessor (SM),
1024 FLOPS per clock per SM can be achieved.

The table I looks at the specification differences between the
PCIe and SXM2 V100 GPUs. The major difference includes
the difference in frequency and the connectivity between
GPUs.

TABLE I: V100-PCIe vs V100-SXM2

Description V100-PCIe V100-SXM2
CUDA Cores 5120 5120

GPU Max Clock Rate (HMz) 1380 1530
Tensor Cores 640 640

Memory Bandwidth (GB/s) 900 900
NVLink bandwidth (GB/s) N/A 300

Deep Learning (Tensor OPS) 112 120

TensorFlow, developed by Googles Brain team, is a library
for numerical computation using data flow graphs. TensorFlow
supports multiple GPUs and can scale to multiple nodes using
gRPC [12]. However, we didn’t use TensorFlow’s distributed
implementation as it does not scale well as was discovered in
paper [9]. Instead we use Uber’s Horovod framework which
uses MPI to distribute the computation across multiple worker
nodes.

MXNet, jointly developed by collaborators from multiple
universities and companies, is a lightweight, portable and
flexible deep learning framework designed for both efficiency
and flexibility. MXNet is capable of launching jobs on a cluster
in several ways including: SSH, Yarn, and MPI. For this
evaluation, SSH was chosen. In SSH mode, the processes in
different nodes use rsync to synchronize the working directory
between the root and worker nodes.

Caffe2, developed by Facebook, is the successor of Caffe.
It redesigned the data structures and added support for dis-
tributed training on multiple nodes. It provides capabilities
to run models on mobile devices. Caffe2 uses the Gloo
library [13] for multi-node training and Redis [14] to facilitate
management of nodes in distributed training. Gloo is an
MPI like library that comes with a number of collective
operations like barrier, broadcast, and allreduce for machine
learning applications. Redis is used by Gloo to connect all the
participating nodes. Recently Caffe2 has been merged with
PyTorch [15], but the measurement and analysis approachs
presented in this paper are applicable to any framework,
regardless whether that framework will disappear in the future
or not.

IV. PERFORMANCE TUNING FOR DL TRAINING

In this section, we tune the deep learning training perfor-
mance for TensorFlow, MXNet and Caffe2. The experiments
were done on a Dell EMC PowerEdge C4140 cluster. The
cluster has 10 C4140 nodes which are connected by 100
Gbps InfiniBand EDR network. Each node has dual Intel
Xeon Gold 6148 CPUs (Skylake architecture) and four Nvidia
V100 GPUs. Of the 10 C4140 nodes, 8 of them have V100-
PCIe GPUs and the remaining two have V100-SXM2 GPUs.
Figure 1 shows a block diagram of the connections between
CPUs and GPUs for both configurations. In each configuration,
there is one PCIe bus connecting from one CPU to all four
GPUs and therefore the GPUs are in the same PCIe root
complex. As a result, all the GPUs are able to do Peer-to-
Peer (P2P) memory accesses. The difference in these two
configurations is that the V100-PCIe GPUs within a node are

24

TABLE II: Hardware and software configuration

Platform PowerEdge C4140
CPU 2x Intel Xeon Gold 6148 (Skylake)

Memory 192GB DDR4 @ 26667MHz
Storage 9TB NFS through IPoIB on EDR InfiniBand

GPU V100-PCIe, V100-SXM2, with 16GB memory
Node Interconnects EDR 100 Gbps InfiniBand

Software and Firmware
Operating System RHEL 7.3 x86 64

Linux Kernel 3.10.0-514.26.2.el7.x86 64
BIOS 2.4.2

CUDA compiler and driver CUDA 9.0 (387.26)
Deep Learning Frameworks and Libraries

CUDNN 7.0
NCCL 2.0

TensorRT 4.0.0
Horovod 0.11.3

TensorFlow 1.5
MXNet 0.11.1
Caffe2 0.8.1

connected to each other through PCIe, while the V100-SXM2
GPUs are connected through NVLink. The storage server is
a Dell PowerVault MD3220 with 9TB of usable disk. It is
connected to the head node of the cluster via SAS HBA. All
the compute nodes mount this storage using InfiniBand EDR.
The hardware and software details of the testbed are shown in
Table II.

We use the well known ILSVRC 2012 as our benchmark
data set [16]. This data set contains 1,281,167 training images
and 50,000 validation images. All images are grouped into
1,000 categories or classes. The total size of the whole dataset
is 143GB. The overall size of ILSVRC 2012 leads to non-
trivial training times and makes it more interesting for analysis.
Additionally, the data set is commonly used by DL researchers
for benchmarking and can provide a comparative view point.
For the neural network model, we chose Resnet50 [17] as
it is a computationally intensive network. For the batch size
parameter in deep learning, we chose the maximum batch size
that does not cause GPU memory errors. In our testing, the
batch size is 64 per GPU for MXNet and Caffe2, and 128
per GPU for TensorFlow. We measured the performance in
images/sec which is a measure of throughput. The images/sec
number was averaged across all iterations to take into account
the minute run to run deviations. The training tests were run
for a single epoch, or one pass through the entire data set. The
throughput is stable through epochs. However, this does not
apply to Caffe2 and we will explain this result in Section IV-A.
Training tests were run on different node counts from a single
node to eight nodes, while inference was only run on a single
node. We also measure the actual network bandwidth for
the InfiniBand fabric bandwidth and disk throughput when
running the Resnet50 model.

A. Single GPU vs Multi-GPU

Figure 2 shows the scaling performance and speedup of one
to 32 V100-PCIe GPUs for all three frameworks. The multiple
GPUs are either in single node (up to 4 GPUs) or across eight
nodes. It can be seen that among the three frameworks, with

PCIe Switch

GPU1GPU0 GPU2 GPU3

CPU0 CPU1
UPI

PCIe x16 Gen 3

(a) V100-PCIe

PCIe Switch

GPU0

GPU3

GPU1

GPU2

CPU0 CPU1
UPI

NVLink
PCIe x16 Gen 3

(b) V100-SXM2

Fig. 1: C4140 server with V100 GPUs

32 GPUs, MXNet scales the best with 29.43x in FP32 mode
and 25.84x in FP16 mode at a 32 GPU scale relative to the
performance of a single GPU. TensorFlow also scales well
with 21.95x in FP32 mode and 23.72x in FP16 mode. Caffe2
scales well within a single node for which the speedup is
3.55x in FP32 and 3.58x in FP16 mode at a four GPU scale
relative to a single GPU. However, it does not scale well
beyond a single node. This result is with Redis library for
multi-node communication. The performance varies between
200 images/sec to 1,000 images/sec in each iteration. We have
also tried its MPI implementation and the result is similar to
the Redis implementation.

To find out why Caffe2 does not perform as expected, we

25

(a) head node CPU (b) compute node CPU

(c) head node memory (d) compute node memory

(e) head node network (f) compute node network

(g) head node disk (h) compute node disk

Fig. 3: Caffe2 performance profiling on both head node and compute nodes of a cluster

profiled the GPU portion of the application with nvprof [18]
profiler and the CPU portion with Intel Storage Performance
Snapshot (SPS) [19]. We found the issue is on the CPU side.
We profiled two training epochs on both the head node and all
compute nodes and the profiling result is shown in Figure 3.
The profiling on all compute nodes are similar and Figure 3
only shows one compute node as an example. It is clear that the
system caches the data in memory when the program is reading
the image database from the disk. In compute nodes, the
utilization of both CPU and InfiniBand network is low when
the database is not fully cached. During this stage, because of
the I/O wait on CPU, the training speed is unstable. But after
the database is fully cached, the utilization of both CPU and
InfiniBand network is much higher as both of them do not
need to wait for the data reading from the disk, instead the
data is read from memory. Since the compute nodes read the
data from network file system (NFS), as shown in Figure 3h
the local disk does not have any reading/writing operations.
Based on this profiling data, we conclude that the training
speed on multiple nodes is as good as the training speed on
one node. In our experiment, the size of ILSVRC2012 image
database for Caffe2 is ∼ 260GB which is lower than the head
node and compute node memory size. If the nodes cannot
cache the whole image database, then the performance will be
as poor as the performance in the first epoch. More storage
experiments will be presented in Section IV-E.

B. V100-SXM2 vs V100-PCIe

As previously shown in Table I, the main difference between
SXM2 and PCIe is that the SXM2 has higher clock frequency
and higher bandwidth between GPUs. To demonstrate how
much improvement can be gained from V100-SXM2 com-

pared to V100-PCIe, we ran the three frameworks on these two
different types of GPUs using the same dataset and parameter
settings. Figure 4 shows the performance differences between
these two GPU types. The comparison is up to 8 GPUs since
we have only 2 nodes with V100-SXM2. When a single GPU
is used, the only difference between SXM2 and PCIe version
is the clock frequency. The GPU max clock rate is 1,380
MHz for PCIe and 1,530 MHz for SXM2 which is ∼10.9%
higher than PCIe. The performance improvement among three
frameworks with SXM2 for single GPU is 3.6%-6.9% which
is in the reasonable range.

When multi-GPU is used, V100-SXM2 has the advantage of
using NVLink over the V100-PCIe which uses PCIe buses for
GPU to GPU communication within a node. In V100-SXM2,
each GPU has 6 NVLinks for bi-directional communication.
The bandwidth of each NVLink is 25GB/s in uni-direction and
all 4 GPUs within a node can communicate at the same time,
therefore the theoretical peak bandwidth is 6*25*4=600GB/s
in bi-direction. However, the theoretical peak bandwidth using
PCIe is only 16*2=32GB/s as the GPUs cannot communicate
in parallel. So in theory the communication with NVLink
could be up to 600/32=18x faster than PCIe. To check how
much improvement using NVLink over PCIe provides, we
profiled the Peer-to-Peer (P2P) memory access time in three
framework with Nvidia command line profiler nvprof [18].
The finding is that TensorFlow implemented P2P without
explicit call to cudaMemcpyPeer() API. MXNet and Caffe2
achieved 3.7x and 3.2x speedup by using NVLink over PCIe
among 4 GPUs in FP32 mode. For Caffe2, with 8 GPUs, its
performance does not scale well compared to 4 GPUs and
the reason has been explained in Section IV-A. Therefore, the
improvement of SXM2 over PCIe is not as high as TensorFlow

26

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 2 4 8 16 32
 0

 5

 10

 15

 20

 25

 30

 35

Im
a
g

e
s/

se
c

S
p

e
e
d

u
p

Number of V100-PCIe

Perf-FP32
Perf-FP16

Speedup-FP32
Speedup-FP16
Ideal speedup

(a) Horovod+TensorFlow

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

1 2 4 8 16 32
 0

 5

 10

 15

 20

 25

 30

 35

Im
a
g

e
s/

se
c

S
p

e
e
d

u
p

Number of V100-PCIe

Perf-FP32
Perf-FP16

Speedup-FP32
Speedup-FP16
Ideal speedup

(b) MXNet

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

1 2 4 8 16 32
 0

 5

 10

 15

 20

 25

 30

 35

Im
a
g

e
s/

se
c

S
p

e
e
d

u
p

Number of V100-PCIe

Perf-FP32
Perf-FP16

Speedup-FP32
Speedup-FP16
Ideal speedup

(c) Caffe2

Fig. 2: The scaling performance for Resnet50 training using
ILSVRC2012 dataset

and MXNet. Since the P2P memory accesses only take a small
portion of the whole application time, as shown in Figure 4, the
overall application execution does not improve significantly.

C. FP16 vs FP32

As mentioned in Section III, the V100 GPU includes Tensor
Cores which support mixed precision training. Here we simply
denote it as FP16 training. We doubled the batch size for FP16
tests since FP16 consumes only half the memory for floating

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 4 8
 0

 5

 10

 15

 20

 25

Im
a
g

e
s/

se
c

Pe
rc

e
n
ta

g
e
(%

)

Number of V100 GPUs

V100-PCIe
V100-SXM2

Improvement(%)

337

604

1077

2046

349

648

1286

2472

(a) Horovod+TensorFlow

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

1 2 4 8
 0

 5

 10

 15

 20

 25

Im
a
g

e
s/

se
c

Pe
rc

e
n
ta

g
e
(%

)

Number of V100 GPUs

V100-PCIe
V100-SXM2

Improvement(%)

354

696

1317

2607

371

739

1435

2879

(b) MXNet

 0

 500

 1000

 1500

 2000

 2500

1 2 4 8
 0

 5

 10

 15

 20

 25

Im
a
g

e
s/

se
c

Pe
rc

e
n
ta

g
e
(%

)
Number of V100 GPUs

V100-PCIe
V100-SXM2

Improvement(%)

291

558

1032

1855

311

607

1168

2008

(c) Caffe2

Fig. 4: V100-SXM2 vs V100-PCIe for Resnet50 training with
ILSVRC2012 dataset

points when compared to FP32. The performance comparison
of FP16 versus FP32 is shown in Figure 5. The reason for the
unstable result for Caffe2 has been explained in Section IV-A.
Except for the distributed training in Caffe2, FP16 is around
60% to 107% faster than FP32.

D. V100 vs P100

To demonstrate the performance advantages of the Tesla
V100 GPU over its previous generation P100 GPU, the per-

27

0%

20%

40%

60%

80%

100%

120%

1 2 4 8 16 32

Im
p

ro
v
e
m

e
n
t

Number of V100-PCIe

Horovod+TensorFlow
MXNet
Caffe2

Fig. 5: The improvement of FP16 over FP32 for Resnet50
training with ILSVRC2012 dataset

 0

 500

 1000

 1500

 2000

 2500

 3000

Horovod+TensorFlow MXNet

Im
a
g

e
s/

se
c

P100-FP32
V100-FP32
P100-FP16
V100-FP16

Fig. 6: V100 vs P100 for Resnet50 training with ILSVRC2012
dataset

formance of one node with four V100-SXM2 was compared
to that of a node with four P100-SXM2. Figure 6 shows this
performance comparison. The result shows that in FP32 mode,
V100 is 26% faster than P100 when using TensorFlow, and
52% faster with MXNet. In FP16 mode, V100 is 103% faster
than P100 with TensorFlow, and 123.8% faster with MXNet.
The reason that V100 is much faster than P100 in FP16 mode
is that P100 does not have Tensor Cores.

E. Storage Considerations

In our testing, a Dell PowerVault MD3220 [20] with 24
500GB NL-SAS 6Gb/s 2.5" hard drives were used. Two of
the twenty four drives are hot spares and the rest are configured
as a 9TB logical block device with RAID 6. This array was
connected to the head node by a single 6Gbps SAS HBA and
exported via NFS with IPoIB to the worker nodes. Since the
ILSVRC 2012 dataset size is lower than the memory size in the
compute nodes, to remove any caching effect in benchmarking,
we clear the PageCache, dentries and inodes before each run.
As a result, the performance data recorded in the first epoch
does not have caching effects since this replicates the scenario

where the data set is too large to fit into memory. This is a
common occurrence in real world situations.

During the first epoch, the data is being pulled directly from
disk as the cache is empty. This should also mimic scenarios
in which the dataset is too large to fit into the cache of the
storage server and therefore there will always be some subset
of data reading from the disk in each epoch.

Storage Performance Snapshot 2018 [19] from Intel was
chosen to be the storage profiling tool. It was run on head
node to profile the aggregated performance of MD3220 storage
as well as on all GPU compute nodes to provide individual
insights on local disk and the network data movement.

Figure 7 shows the storage read performance with 1
and 2 compute nodes when running Resnet50 model with
Horovod+TensorFlow and MXNet on up to two nodes with
V100-SXM2 GPUs. There is almost no writing operations in
deep learning training, so the throughput numbers only include
disk reading throughput and they are depicted as the MB/s.
Since running the neural network with two nodes is faster
than using one node, the total time needed with two nodes is
around half of using one node. The following conclusions can
be obtained:

(1) There is positive correlation between storage read
throughput and the number of compute nodes. The more nodes
are used, the higher read throughput is observed. Consequently
high end storage is needed when designing a large deployment.
The peak throughput using two nodes is close to 2x compared
to using one node.

(2) For MXNet, the read throughput is consistent through
the first epoch, while for TensorFlow, the read throughput is
decreasing through the first and second epoch. The reason
is explained as follows. The ImageNet JPEG images are
formated to 1024 TFRecords file database for TensorFlow and
one RecordIO database file for MXNet. The database for both
TensorFlow and MXNet is small enough to fit into main mem-
ory in each compute node. However, both frameworks behave
differently in terms of storage throughput. In deep learning
training, one epoch means traversing the whole dataset once.
After each epoch, all files in the same dataset are shuffled.
This technique is used for solving the data shortage issue. For
MXNet, only one process is used for reading the only one
database file, therefore the read throughput is consistent in the
first epoch. In the second epoch, the whole dataset has been
cached in the memory of each compute node, so the process
does not need to fetch the same dataset from the disk anymore.

For Horovod+TensorFlow, although the whole dataset can
fit into main memory, there is still read activity even after one
epoch. This is because the Resnet50 training is implemented
differently than MXNet. In Horovod+TensorFlow’s implemen-
tation, four MPI processes are launched for four GPUs within a
node. However, the four MPI processes do not read the distinct
parts of the whole dataset. Instead they are given different
random seeds for reading files, so there is high chance that
they read some common files. As more and more common
files are cached into compute nodes’ main memory and storage
system’s cache, less files are needed to fetch from the disk.

28

 0

 100

 200

 300

 400

 500

 600

0 120 240 360 480 600 720 840 960

D
is

k
T
h
ro

u
g

h
p

u
t

(M
B

/s
)

Time (seconds)

1 node
2 nodes

(a) Horovod+TensorFlow FP16

 0

 100

 200

 300

 400

 500

 600

0 300 600 900 1200 1500 1800

D
is

k
T
h
ro

u
g

h
p

u
t

(M
B

/s
)

Time (seconds)

1 node
2 nodes

(b) Horovod+TensorFlow FP32

 0

 50

 100

 150

 200

 250

0 60 120 180 240 300 360 420 480 540 660 780

D
is

k
T
h
ro

u
g

h
p

u
t

(M
B

/s
)

Time (seconds)

1 node
2 nodes

(c) MXNet FP16

 0

 50

 100

 150

 200

 250

0 300 600 900 1200 1500 1800

D
is

k
T
h
ro

u
g

h
p

u
t

(M
B

/s
)

Time (seconds)

1 node
2 nodes

(d) MXNet FP32

Fig. 7: Storage read performance for Resnet50 training (2 epochs)

When the whole dataset is cached, there is no reading activities
from the disks anymore. In the extream case when all four
processes always read the same files, four epochs are needed
to traverse the whole dataset. In practice, based on the results
shown in Figure 7, two epochs are needed to traverse the whole
dataset, as the read throughput become 0 at the end of the
second epoch.

(3) Comparing the throughput number for FP32 and FP16, it
is clearly shown that the same system running with lower pre-
cision mode requires more storage throughput. For instance,
with two nodes, the peak throughput is ∼550 MB/s in FP16
mode, compared to only 430 MB/s in FP32 mode. The FP16
tests consistently read more data in TensorFlow and MXNet,
because in all tests the batch size used in FP16 mode doubled
compared to FP32 mode. This causes more image files to be
prefetched in each iteration which made FP16 read operations
1.5 to 2 fold higher to FP32. These two different frameworks
have their own database formats and their own way of pre-
fetching data. But in general, the storage system needs to have
fast read performance for applications optimized for tensor
cores. Since FP16 reduced the memory footprint in GPU
memory, this allowed more image files be loaded with larger
batch size.

F. Node Interconnect Considerations

All multi-node tests were run on Mellanox 100Gbps EDR
InfiniBand network. Each compute node has one InfiniBand

EDR adapter, with Mellanox OFED 4.4 driver. As mentioned
in the previous section, the MD storage array is directly
connected to the head node and is shared as an NFS volume
to all compute node via the 100Gbps EDR network.

As with the storage tests, caches have been cleared on head
node and all compute node before testing began. The ImageNet
dataset is not large enough while compared to real world
production environment. If the caches didn’t get cleared, the
data will be buffered in head node or compute node’s memory.
Therefore clearing out all data in caches is meant to reflect the
real world situation where data set is normally larger than what
storage systems can cache.

The throughput (MB/s) over Infiniband EDR adapter was
measured on all compute nodes with Mellanox Unified
Fabric Manager [21]. Figure 8 shows the InfiniBand EDR
network performance when running Resnet50 with both
Horovod+TensorFlow and MXNet on two compute nodes.
Both compute nodes have the same throughput numbers, so
the performance in this figure is from only one compute node.
The following conclusion can be reached:

(1) The receive throughput is higher than the send through-
put. This is because two types of data are going through
the InfiniBand network: the gradidents exchanging and the
input dataset reading. In deep learning distributed training,
different nodes work on their own dataset. After each iteration,
the graidents calculated by all processes/threads in different
nodes are reduced and then the reduced results are broadcasted

29

 0

 200

 400

 600

 800

 1000

0 50 100 150 200 250 300 350 400

T
h
ro

u
g

h
p

u
t(

M
B

/s
)

Time (seconds)

Receive
Send

(a) Horovod+TensorFlow FP16

 0

 200

 400

 600

 800

 1000

0 100 200 300 400 500 600 700 800

T
h
ro

u
g

h
p

u
t(

M
B

/s
)

Time (seconds)

Receive
Send

(b) Horovod+TensorFlow FP32

 0

 100

 200

 300

 400

 500

 600

 700

 800

0 50 100 150 200 250 300 350 400

T
h
ro

u
g

h
p

u
t(

M
B

/s
)

Time (seconds)

Receive
Send

(c) MXNet FP16

 0

 100

 200

 300

 400

 500

 600

 700

 800

0 100 200 300 400 500 600 700 800

T
h
ro

u
g

h
p

u
t(

M
B

/s
)

Time (seconds)

Receive
Send

(d) MXNet FP32

Fig. 8: InfiniBand network performance for Resnet50 training (2 epochs)

back to them. Therefore different nodes need to exchange
gradients through InfiniBand network. Different nodes also
read the input dataset through InfiniBand since the storage is
mounted through InfiniBand. The receive throughput includes
the throughput of gradient exchange between nodes and the in-
put data, while the send throughput only includes the gradient
exchange throughpupt.

(2) The gradients to be sent and received are the same
for each compute node, and the difference between receive
and send throughput is the disk read throughput. This can
be verified together with the storage throughput in Figure 7.
For instance, in TensorFlow FP16 mode, the receive and send
throughput difference in the beginning of the training is ∼300
MB/s in one node. With two nodes reading data from the
storage at the same time, the total disk throughput is ∼600
MB/s which matches the beginning peak number with 2 nodes
in Figure 7. For MXNet, in the second epoch when no disk
read operation happens, the receive througput line overlaps
prefectly with the send throughput line.

(3) In FP16 training, the size of the gradients to be reduced
is slightly higher than FP32 for Horovod+TensorFlow, but only
half of FP32 for MXNet. This is because of their different
implementations for FP16 training. The more detailed analysis
and explanation from the algorithm level will be investigated
in the future work. In MXNet, there is also a big drop after
one epoch which is because of the shuffle operation for the
whole dataset. The TensorFlow does not have this drop. This is

because TensorFlow does not really shuffle the whole dataset.
Instead it uses a buffer to sample from the whole dataset. The
buffer size is 10,000 which is much smaller than the 1,281,167
images in the entire dataset.

V. PERFORMANCE TUNING FOR DL INFERENCE

Inference is the end goal of deep learning. The inference
performance is also critical as it is either latency-focused
or throughput-focused. This section quantifies the inference
performance using NVIDIA’s TensorRT library. TensorRT,
previously called GIE (GPU Inference Engine), is a high
performance deep learning inference engine for production
deployments of deep learning models. It maximizes inference
throughput and efficiency. TensorRT provides users the ability
to take advantage of fast reduced precision instructions pro-
vided in the Pascal and Volta GPUs.

Although many HPC applications require high precision
computation with FP32 (32-bit floating point) or FP64 (64-
bit floating point), deep learning researchers have found they
are able to achieve the same inference accuracy with FP16
(16-bit floating point) as can be had with FP32 [22]. Many
applications only require INT8 (8-bit integer) or lower preci-
sion to keep an acceptable inference accuracy [23]. TensorRT
began to support INT8 operations in version 2. All inference
experiments were performed on a single V100-PCIe GPU.

Figure 9 shows the inference performance with TensorRT on
Resnet50 model with different batch sizes. Note that a known

30

TABLE III: The accuracy between FP32 and INT8

Network FP32 INT8 Difference
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Resnet-50 72.90% 91.14% 72.84% 91.08% 0.07% 0.06%
ResNet-101 74.33% 91.95% 74.31% 91.88% 0.02% 0.07%
ResNet-152 74.90% 92.21% 74.84% 92.16% 0.06% 0.05%

VGG-16 68.35% 88.45% 68.30% 88.42% 0.05% 0.03%
VGG-19 68.47% 88.46% 68.38% 88.42% 0.09% 0.03%

GoogLeNet 68.95% 89.12% 68.77% 89.00% 0.18% 0.12%
AlexNet 56.82% 79.99% 56.79% 79.94% 0.03% 0.06%

issue is that on V100 GPU, running models with INT8 only
works if the batch size is evenly divisible by 4 [24]. For this
purpose we start with higher batch sizes. We can see that INT8
mode is ∼3.7x faster than FP32. This is expected since the
theoretical speedup of INT8 is 4x compared to FP32 if only
matrix multiplications are performed and no other overhead
is incurred. However, there are kernel launches, occupancy
limits, data movement and mathematical operations other than
multiplications, so the speedup is reduced to about 3x faster.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 2 4 8 16 32 64 128 256 512 1024

Im
a
g

e
s/

se
c

Batch size

FP32
INT8

417 537
723

1061
1336 1469 1565 1619 1652 1680 16831803

2990

4176

5161

5853
6136 6262 6287 6290

Fig. 9: TensorRT inference for Resnet50 with INT8 vs FP32

Deep learning inference can be applied in difference scenar-
ios. In certain instances, delayed batch processing is acceptable
in which case the focus is using large batch sizes to increase
throughput. On the other hand, real-time scenarios are latency
sensitive, with time to solution taking priority over efficient
hardware utilization. In such cases, the batch size can be
as small as 1. Therefore we also measured the performance
difference when using different batch sizes as shown in
Figure 9. It can be seen that without batch processing the
inference performance is very low. This is because the GPU
is not assigned enough workload to keep it busy. The larger the
batch size was used, the higher the inference performance was
produced. This begins to taper off as the batch size increases.
The largest batch size is only limited by GPU memory.

We also compare the accuracy when using both INT8
and FP32 to verify that using INT8 can get comparable
performance to FP32. To make INT8 data encode the same
information as FP32 data, a calibration method is applied
in TensorRT to convert FP32 to INT8 in a way that mini-
mizes the loss of information. More details of this calibration
method can be found in the presentation “8-bit Inference with
TensorRT [25]. We used the ILSVRC2012 validation dataset
for both calibration and benchmarking. The validation dataset

has 50,000 images and was divided into batches where each
batch has 25 images. The first 50 batches were used for
calibration purpose and the rest of the images were used
for accuracy measurement. Several pre-trained neural network
models were used in our experiments, including ResNet-
50, ResNet-101, ResNet-152 [26], VGG-16, VGG-19 [27],
GoogLeNet [28] and AlexNet [29]. Both top-1 and top-5
accuracy were recorded using FP32 and INT8 and the accuracy
difference between FP32 and INT8 was calculated. The result
is shown in Table III. We can see the accuracy difference
between FP32 and INT8 is between 0.02% - 0.18% for all test
cases. This means very little accuracy is lost while achieving
a 3x speed up.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we performed a comprehensive benchmarking
for Horovod+TensorFlow, MXNet and Caffe2 on a V100
GPU cluster. The benchmarking includes both the training and
inference phases. For training, we compared the performance
difference of single GPU vs multi-GPU, V100-SXM2 vs
V100-PCIe, and FP16 vs FP32. We profiled those frameworks
to understand the utilization of CPU, memory, network and
storage and analyzed the reason for the unexpected per-
formance for Caffe2. We found that for Caffe2, when the
dataset is not fully cached into system’s memory, the training
performance is very unstable across iterations in multi-node
training. For TensorFlow and MXNet, the differences for the
database format and shuffle implementation lead to different
storage and network behavior. The user is also able to infer the
requirement of both storage and network based on our profiling
results, for Resnet50 model and ILSVRC 2012 workload.

For inference, we benchmarked the throughput and accuracy
with FP32 and INT8 using TensorRT library. As a result,
INT8 is 3.7x faster than FP32 but can still achieve comparable
accuracy.

In the future work, we will try larger data sets so that
it cannot be fit into memory and then check the impact of
different file systems. We will also try to experiment and
analyze the model parallelism implementations for Recurrent
Neural Networks. The Resnet50 model benchmarked in this
paper is implemented with data parallelism in all frameworks.
We would like to compare these two types of implementations.
More storage systems and the latest 32GB V100 GPUs will
also be evaluated in the future work.

31

REFERENCES

[1] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: A System for
Large-Scale Machine Learning,” in OSDI, vol. 16, 2016, pp. 265–283.

[3] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[4] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the 22nd ACM international
conference on Multimedia. ACM, 2014, pp. 675–678.

[5] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking State-of-the-Art
Deep Learning Software Tools,” in Cloud Computing and Big Data
(CCBD), 2016 7th International Conference on. IEEE, 2016, pp. 99–
104.

[6] F. Seide and A. Agarwal, “CNTK: Microsoft’s Open-source Deep-
learning Toolkit,” in Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM,
2016, pp. 2135–2135.

[7] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “PyTorch: Tensors and
Dynamic Neural Networks in Python with Strong GPU Acceleration,”
2017.

[8] C. Coleman, D. Narayanan, D. Kang, T. Zhao, J. Zhang, L. Nardi,
P. Bailis, K. Olukotun, C. Ré, and M. Zaharia, “DAWNBench: An End-
to-End Deep Learning Benchmark and Competition,” Training, vol. 100,
no. 101, p. 102, 2017.

[9] A. Sergeev and M. Del Balso, “Horovod: Fast and Easy Distributed
Deep Learning in TensorFlow,” arXiv preprint arXiv:1802.05799, 2018.

[10] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,
A. Tulloch, Y. Jia, and K. He, “Accurate, Large Minibatch SGD: Training
ImageNet in 1 Hour,” arXiv preprint arXiv:1706.02677, 2017.

[11] Y. You, Z. Zhang, C.-J. Hsieh, J. Demmel, and K. Keutzer, “ImageNet
Training in Minutes,” in Proceedings of the 47th International Confer-
ence on Parallel Processing. ACM, 2018, p. 1.

[12] X. Wang, H. Zhao, and J. Zhu, “GRPC: A communication cooperation
mechanism in distributed systems,” ACM SIGOPS Operating Systems
Review, vol. 27, no. 3, pp. 75–86, 1993.

[13] “Gloo Library,” https://github.com/facebookincubator/gloo, 2018.
[14] J. L. Carlson, Redis in Action. Manning Publications Co., 2013.
[15] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer, “Automatic Differentiation in
PyTorch,” 2017.

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A Large-scale Hierarchical Image Database,” in Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE,
2009, pp. 248–255.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[18] “Nvidia Profiler User’s Guide,” http://docs.nvidia.com/cuda/profiler-
users-guide/index.html, 2018.

[19] “Intel Storage Performance Snapshot 2018,”
https://software.intel.com/sites/products/snapshots/storage-snapshot,
2018.

[20] “DELL PowerVault MD3200/MD3220 Series of Storage Arrays,”
http://i.dell.com/sites/content/business/solutions/engineering-
docs/en/Documents/powervault-md3200-md3220-technical-guidebook-
en.pdf, 2018.

[21] “Unified Fabric Manager Software,” http://www.mellanox.com/related-
docs/prod management software/PB UFM Software.pdf, 2018.

[22] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
Learning with Limited Numerical Precision,” in International Confer-
ence on Machine Learning, 2015, pp. 1737–1746.

[23] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented Ap-
proximation of Convolutional Neural Networks,” arXiv preprint
arXiv:1604.03168, 2016.

[24] “TensorRT Release Notes,” http://docs.nvidia.com/deeplearning/sdk/tensorrt-
release-notes/rel 3-0-1.html, 2018.

[25] “8-bit Inference with TensorRT,” http://on-
demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-
with-tensorrt.pdf, 2017.

[26] “Deep Residual Networks,” https://github.com/KaimingHe/deep-
residual-networks, 2018.

[27] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-scale Image Recognition,” arXiv preprint arXiv:1409.1556,
2014.

[28] “BVLC GoogleNet Model,” https://github.com/BVLC/caffe/tree/master/
models/bvlc googlenet, 2018.

[29] “BVLC AlexNet Model,” https://github.com/BVLC/caffe/tree/master/
models/bvlc alexnet, 2018.

32

