
ar
X

iv
:2

40
9.

15
37

3v
1

 [c
s.L

G
]

19
 S

ep
 2

02
4

Enhancing Performance and Scalability of Large-Scale
Recommendation Systems with Jagged Flash A!ention

Rengan Xu, Junjie Yang, Yifan Xu, Hong Li, Xing Liu, Devashish Shankar, Haoci Zhang
Meng Liu, Boyang Li, Yuxi Hu, Mingwei Tang, Zehua Zhang, Tunhou Zhang, Dai Li
Sijia Chen, Gian-Paolo Musumeci, Jiaqi Zhai, Bill Zhu, Hong Yan, Srihari Reddy

{renganxu,junjieyang,xuyifan,hongli,xingl,devashish,haocizhang}@meta.com
{mengliu2019,boyangli,yuxihu,mingwt,zehua,tunhouzhang,daili1}@meta.com

{sijiac,gpmusumeci,jiaqi.zhai2,billzh,hong,sriharir}@meta.com
Meta Platforms

Menlo Park, CA, USA

Abstract
The integration of hardware accelerators has signi!cantly advanced
the capabilities of modern recommendation systems, enabling the
exploration of complex ranking paradigms previously deemed im-
practical. However, the GPU-based computational costs present
substantial challenges. In this paper, we demonstrate our develop-
ment of an e"ciency-driven approach to explore these paradigms,
moving beyond traditional reliance on native PyTorch modules.
We address the speci!c challenges posed by ranking models’ de-
pendence on categorical features, which vary in length and compli-
cate GPU utilization. We introduce Jagged Feature Interaction Ker-
nels, a novel method designed to extract !ne-grained insights from
long categorical features through e"cient handling of dynamically
sized tensors. We further enhance the performance of attention
mechanisms by integrating Jagged tensors with Flash Attention.
Our novel Jagged Flash Attention achieves up to 9× speedup and
22× memory reduction compared to dense attention. Notably, it
also outperforms dense #ash attention, with up to 3× speedup and
53% more memory e"ciency. In production models, we observe
10% QPS improvement and 18% memory savings, enabling us to
scale our recommendation systems with longer features and more
complex architectures.

Keywords
Recommendation Systems, Feature Learning, TritonKernel, Jagged
Tensor, Flash Attention, Jagged Flash Attention

ACM Reference Format:
Rengan Xu, Junjie Yang, Yifan Xu, Hong Li, Xing Liu, Devashish Shankar,
Haoci Zhang, Meng Liu, Boyang Li, Yuxi Hu, Mingwei Tang, Zehua Zhang,
Tunhou Zhang, Dai Li, Sijia Chen, Gian-Paolo Musumeci, Jiaqi Zhai, Bill

Zhu, Hong Yan, Srihari Reddy. 2024. Enhancing Performance and Scalabil-
ity of Large-Scale Recommendation Systems with Jagged Flash Attention.
In 18th ACM Conference on Recommender Systems (RecSys ’24), October 14–
18, 2024, Bari, Italy. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3640457.3688040

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro!t or commercial advantage and that copies bear this notice and the full citation
on the !rst page. Copyrights for third-party components of this workmust be honored.
For all other uses, contact the owner/author(s).
RecSys ’24, October 14–18, 2024, Bari, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0505-2/24/10
https://doi.org/10.1145/3640457.3688040

1 Introduction
Categorical features, such as user-clicked itemswithin the lastmonth,
are heavily relied upon by ranking models [5, 6, 10–12]. Unlike
dense (#oat) features, which maintain a !xed size across training
samples, the length of categorical feature values can vary among
di$erent training samples. Padding has traditionally been used to
standardize the sizes of these categorical features across various
training samples within a batch [7, 8]. However, while padding
can be su"cient in some cases, it has inherent drawbacks. These
are particularly noticeable with long length categorical inputs, a
common input format for large, complex models trained on GPUs.
Padding can introduce signi!cant overhead, leading to increased
memory usage, computational demands, and communication over-
head. This not only a$ects the model’s e"ciency but also hampers
scalability, particularly in environments with limited resources.

In this paper, we present our e$orts in designing and adopting
an e"ciency-driven approach in the exploration of computation-
ally expensive ranking paradigms. This shift marks a departure
from the conventional approach of relying solely on the combina-
tion of native PyTorch modules to achieve algorithmic logic. In the
rest of the paper, we will discuss the challenges, the methodologies
and the lessons learned from our journey. By sharing our experi-
ences, we aim to contribute to the collective knowledge base of the
RecSys community, empowering fellow researchers and practition-
ers to navigate similar challenges in their pursuit of innovation.

2 Methodology
Wepropose Jagged Feature InteractionKernel, an innovative method
tailored for extracting !ne-grained insights from long categorical

Attention Dimension

Batch Size

Feature

Feature

Batch Size

Output Dimension

sneaker sandal coat football vase

Feature: User clicked ads within 2 days Attention Weight

shoes Others

Figure 1: Jagged Feature Interaction Kernel.

http://arxiv.org/abs/2409.15373v1
https://doi.org/10.1145/3640457.3688040
https://doi.org/10.1145/3640457.3688040
https://doi.org/10.1145/3640457.3688040

RecSys ’24, October 14–18, 2024, Bari, Italy Xu et al.

Table 1: Triton Kernels Benchmark Result for Jagged Tensor Operators. !: Batch size. "#$_! is the jagged dimension with the
total sequence length across samples in a batch. !%: Sequence length for sample %.&: Embeddingdimension.' : Hyperparameter.
PyTorch version: The implementation with native PyTorch operator which requires padding. Triton version: The implemen-
tation with custom Triton operator without padding.

GPU Kernels for Jagged tensors Description Version Memory (MB) FLOPs (M) Latency (us)

jagged_dense_bmm
["#$_!,&] × [!,&,'] = ["#$_!,'] PyTorch 309 838.9 166.6

Triton 109 (2.83×) 422.5 (1.98×) 99.3 (1.67×)

jagged_jagged_bmm
["#$_!,&] × ["#$_!,'] = [!,&,'] PyTorch 206 838.9 199.4

Triton 104 (1.98×) 422.5 (1.98×) 79.1 (2.52×)

jagged_softmax
"#$_("() *$+, ([!%,&])) PyTorch 12.5 4.9 24.9

Triton 6.3 (1.98×) 2.5 (1.98×) 18 (1.38×)

jagged_jagged_bmm_jagged_out
["#$_!,&] × ["#$_!,&] = ["#$_(!% ∗ !%)] PyTorch 1680 20971 671

Triton 540 (3.11×) 7200 (2.91×) 293 (2.29×)

array_jagged_bmm_jagged_out
["#$_(!% ∗ !%)] × ["#$_!,&] = ["#$_!,&] PyTorch 4330 20971 755

Triton 1990 (2.18×) 7200 (2.91×) 585 (1.29×)

jagged2_softmax
"#$_("() *$+, ([!% ∗ !%])) PyTorch 1530 122.9 2162

Triton 520 (2.94×) 42.2 (2.91×) 707 (3.06×)

features. Figure 1 demonstrates an overview of our proposed ker-
nel. By focusing on the interactions between feature values and
targeting items, Jagged Feature Interaction prioritizes the most rel-
evant feature values, assigning them higher weights. The features
are represented with Jagged tensor from TorchRec [3]. The jagged
tensor e"ciently stores variable-length features frommultiple sam-
ples in a compact and contiguous manner within memory with-
out the need for padding. We achieve this using two tensors: one
for holding all feature values collectively and another o$set tensor
that determines the sample boundaries for each feature segment.

2.1 Jagged Flash Attention
The #ash attention [1, 2] is the state-of-the-art algorithm for ac-
celerating the standard attention. Its core idea is to fuse separate
attention operations into a single kernel, minimizing data move-
ment between GPU shared memory and global memory, and max-
imizing computations within the fast shared memory. Similar to
the classic matrix multiplication optimization, #ash attention em-
ploys tiling optimization to perform two GEMM operations and
one softmax block by block. However, applying softmax indepen-
dently to each block poses a challenge, as it requires the sum of
exponentials in the denominator, which depends on information
from later blocks. To overcome this challenge, it leverages the on-
line softmax algorithm [4], adjusting results for later blocks as new
information becomes available. The #ash attention optimization
could be applied in both dense and jagged attention. To achieve
the best performance and maximize the memory saving, we have
combined both jagged tensor and #ash attention into jagged #ash
attention optimization.

2.2 Triton Kernels for Jagged Tensor
We built customized Triton kernels [9] for both forward and back-
ward computations for Jagged tensor operations. Triton is the pro-
gramming paradigm based on blocked algorithms which can fa-
cilitate the construction of high-performance compute kernels for
neural networks and allow compilers to aggressively optimize pro-
grams for data locality and parallelism. Speci!cally, we build

• Jagged Tensor (sparse) multiply Jagged Tensor (sparse)
• Jagged Tensor (sparse) multiply Dense Tensor (dense)

Figure 2: Latency & memory benchmark results for atten-
tion.$+,_-: max sequence length

• Softmax for Jagged Tensor
• MLPs for Jagged Tensor
• Elementwise operations for Jagged Tensor
• Jagged #ash attention
• Conversions between Jagged Tensor and Dense Tensor

3 Experiments and Conclusion
Table 1 shows the performance comparison between the custom
Triton and the native PyTorch implementations for selective ker-
nels. We demonstrate the relative improvement of Triton over Py-
Torch in parenthesis. It can be seen that the jagged operators re-
duce the FLOPs and memory usage signi!cantly and outperform
the dense version accordingly.

We also compared di$erent attention implementationswith BF16
in Figure 2. The jagged attentionmechanism o$ers signi!cant speedup
and memory e"ciency improvements over dense attention. Specif-
ically, jagged attention achieves up to 2× speedup compared to
dense attention, while jagged #ash attention further improves this
to up to 9×. Even when compared to dense #ash attention, jagged
#ash attention still o$ers up to 3× speedup. In terms of memory
usage, jagged attention is up to 3.5× more e"cient than dense at-
tention, while jagged #ash attention reduces memory usage by up
to 22×. Notably, the memory usage for both dense and jagged #ash
attention increases linearly rather than quadratically, with jagged
#ash attention being up to 53% more memory e"cient. These im-
provements have practical implications for end-to-endmodel train-
ing, where we have observed approximately 10% QPS improve-
ment and 18%memory savings for productionmodels. This enables
us to scale our recommendation systems further, accommodating
longer features and more complex model architectures.

Enhancing Performance and Scalability of Large-Scale Recommendation Systems with Jagged Flash A!ention RecSys ’24, October 14–18, 2024, Bari, Italy

Acknowledgments
This work is a collective endeavor of many individuals, and the in-
valuable contributions from the following people (listed in alpha-
betical order): Adnan Akhundov, Wei Chen, Yang Chen, Lu Fang,
Carl Hu, Yuzheng Huang, Mu-Chu Lee, Bert Maher, Andrey Male-
vich, Sarunya Pumma, Ketan Singh, Adele Sun, Xiaodong Wang,
WeiWei, Xinfeng Xie, Jackie Xu, Chunzhi Yang, andMengchi Zhang.
We would also like to thank Sandeep Pandey, Santanu Kolay, Ajit
Mathew, Damien Sereni, Ian Barber, Colin Taylor, Adnan Aziz for
their leadership support.

References
[1] Tri Dao. 2023. Flashattention-2: Faster attention with better parallelism and

work partitioning. arXiv preprint arXiv:2307.08691 (2023).
[2] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. 2022. FlashAt-

tention: Fast and Memory-E"cient Exact Attention with IO-Awareness. In Ad-
vances in Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. CurranAssociates, Inc., 16344–
16359.

[3] Dmytro Ivchenko, Dennis Van Der Staay, Colin Taylor, Xing Liu, Will Feng,
Rahul Kindi, Anirudh Sudarshan, and Shahin Sefati. 2022. Torchrec: a pytorch
domain library for recommendation systems. In Proceedings of the 16th ACM
Conference on Recommender Systems. 482–483.

[4] MaximMilakov and Natalia Gimelshein. 2018. Online normalizer calculation for
softmax. arXiv preprint arXiv:1805.02867 (2018).

[5] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommenda-
tion model for personalization and recommendation systems. arXiv preprint
arXiv:1906.00091 (2019).

[6] Mingwei Tang, Meng Liu, Hong Li, Junjie Yang, Chenglin Wei, Boyang Li, Dai Li,
Rengan Xu, Yifan Xu, Zehua Zhang, et al. 2024. Async Learned User Embeddings
for Ads Delivery Optimization. arXiv preprint arXiv:2406.05898 (2024).

[7] PyTorch Team. 2021. The nestedtensor package prototype:Readme.md. https://
github.com/pytorch/nestedtensor/blob/master/nestedtensor/csrc/README.
md.

[8] Tensor#ow Team. 2022. Ragged Tensors. https://www.tensor#ow.org/api_docs/
python/tf/RaggedTensor?version=nightly.

[9] Philippe Tillet, Hsiang-Tsung Kung, and David Cox. 2019. Triton: an intermedi-
ate language and compiler for tiled neural network computations. In Proceedings
of the 3rd ACM SIGPLAN International Workshop on Machine Learning and Pro-
gramming Languages. 10–19.

[10] Jiaqi Zhai, Lucy Liao, Xing Liu, Yueming Wang, Rui Li, Xuan Cao, Leon Gao,
Zhaojie Gong, Fangda Gu, Michael He, et al. 2024. Actions Speak Louder than
Words: Trillion-Parameter Sequential Transducers for Generative Recommenda-
tions. arXiv preprint arXiv:2402.17152 (2024).

[11] Buyun Zhang, Liang Luo, Yuxin Chen, Jade Nie, Xi Liu, Daifeng Guo, Yanli Zhao,
Shen Li, Yuchen Hao, Yantao Yao, et al. 2024. Wukong: Towards a Scaling Law
for Large-Scale Recommendation. arXiv preprint arXiv:2403.02545 (2024).

[12] Buyun Zhang, Liang Luo, Xi Liu, Jay Li, Zeliang Chen, Weilin Zhang, Xiaohan
Wei, Yuchen Hao, Michael Tsang, Wenjun Wang, et al. 2022. DHEN: A deep
and hierarchical ensemble network for large-scale click-through rate prediction.
arXiv preprint arXiv:2203.11014 (2022).

https://github.com/pytorch/nestedtensor/blob/master/nestedtensor/csrc/README.md
https://github.com/pytorch/nestedtensor/blob/master/nestedtensor/csrc/README.md
https://github.com/pytorch/nestedtensor/blob/master/nestedtensor/csrc/README.md
https://www.tensorflow.org/api_docs/python/tf/RaggedTensor?version=nightly
https://www.tensorflow.org/api_docs/python/tf/RaggedTensor?version=nightly

	Abstract
	1 Introduction
	2 Methodology
	2.1 Jagged Flash Attention
	2.2 Triton Kernels for Jagged Tensor

	3 Experiments and Conclusion
	Acknowledgments
	References

